

計算	1例:3種類のプローブ	による	3円0	の測気	Ē	1
) Bal	1 mode 2^2 1 2^2 1 2^2 1 2^2 1 2^2 1 1 1 3 3 3 3 3 3 3 3 3 3					
25	i pioce					
	Center position error of probe c_y, c_y	×	0	×	0	0
	Center position error of probe c_x, c_y Diameter error of probe c_d $(s_c \text{ not included})$	×	0 ×	× 0	0	0
	Center position error of probe $c_x c_y$ Diameter error of probe c_d $(s_c$ not included) Certificate error of reference circle s_c	× × ×	0 × ×	× 0 ×	0 0 ×	0
	Center position error of probe $c_x c_y$ Diameter error of probe c_d $(s_c$ not included) Certificate error of reference circle s_c X position error of measured circle s_x	× × × 1.928	○ × × 2.441	× ○ × 1.933	0 0 × 2.444	0 0 2.444
	Center position error of probe $c_x c_y$ Diameter error of probe c_d $(s_c$ not included) Certificate error of reference circle s_c X position error of measured circle s_x Y position error of measured circle s_y	× × × 1.928 1.956	○ × × 2.441 2.473	× ○ × 1.933 2.266	○ ○ × 2.444 2.720	0 0 2.444 2.720

S	ummary of Calculations	aner:
	Two types of uncertainty matrices S of measured points:	
1.	S _{ran} : form deviation is assumed as the random	
2.	S _{cov} : form deviation has correlation	
•	Three types of uncertainty matrices P of measured parameters:	
1.	P _{ran} : form deviation is assumed as the random	
2.	P _{cov} : form deviation has correlation and calculated using the autocorrelation function ► BEST	
3.	P _{rec} : form deviation has correlation and calculated without the autocorrelation function ► USE	
F	P _{cov} is the theoretical good estimation, however, the	
a	utocorrelation function is need (how to get?) and,	
F	P _{ran} and P _{r+c} have problems, such as over or under stimation in the specified measuring conditions.	
2005	5/12/20 三次元座標測定7回	42

