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As an alternative to the conventional method of measuring length as a function of the wavelength of a monochromatic laser source, we

investigated the possibility of arbitrary distance estimation using the repetition interval of a femtosecond optical frequency comb (FOFC). The

investigation is based on an analysis of the formation of the interference fringes of multiple pulse trains. It is found that distance can be measured

as a function of the repetition interval between pulses by determining two values from the interference fringes of multiple pulse trains. One is the

distance between temporal coherence peaks, and the other is the phase relation between the multiple interference fringes. Theoretical analysis

and numerical investigations pave the way for the development of a new length traceability system directly linked to a stable FOFC for both

scientific and industrial uses. # 2011 The Japan Society of Applied Physics

1. Introduction

In July 2009, the national standard tool for measuring length
in Japan changed from an iodine-stabilized helium–neon
(He–Ne) laser to a femtosecond optical frequency comb
(FOFC). Owing to the outstanding frequency stability of
the FOFC (for example, see ref. 1), in the next General
Conference of Weights and Measures (Conférence générale
des poids et measures: CGPM), the FOFC is expected as a
new standard tool for the International System of Units (SI)
of meter. Because the traceability of meter is the infra-
structure for both scientific and industrial uses, how to prac-
tically perform a distant metrology that is directly linked to
an FOFC length standard tool is the most urgent challenge.

The reason for this challenge is that markedly different
characteristics exist between a He–Ne laser and an FOFC in
both time and frequency domains. In the time domain, a
He–Ne laser emits continuous sine wave-shaped light, but an
FOFC emits discrete pulse-train-shaped light. In the fre-
quency domain, a He–Ne laser can be simplified as a delta
function, but an FOFC can be described as a comb function.
Because of these differences, one cannot benefit from the
more stable frequency performance of ultraprecision length
measurement by just changing the light source from a He–
Ne laser to an FOFC in a measurement system (generally, an
ordinary Michelson interferometer), which was previously
performed by changing the light source from a krypton lamp
to a He–Ne laser, since both light sources are used as
monochromatic wavelength standard tools.

Previous attempts to solve this problem have not been
satisfactory. For example, in 2000, by taking advantage
of the frequency domain characteristics of an FOFC,
Minoshima and Matsumoto reported on a high-resolution
long-distance measurement method used by considering the
phase shift of stable intermode beats from the FOFC.2)

Recently, Yokoyama et al. have extended the detection of
optical beats to the THz region to perform length measure-
ments.3) In the system developed by Minoshima and
Matsumoto, a phase meter is required. In the experiment
conducted by Yokoyama et al., one needs to synchronize
two FOFCs to obtain a stable intermode beat in the THz
region. Both systems require more than one FOFC light
source.

There are also some studies focusing on the time domain
characteristics of an FOFC to challenge this problem. For
example, in 2004, Ye proposed a method used by changing
the pulse repetition frequency of an FOFC and observing the
interference fringes of two pulse trains for a long arbitrary
length measurement.4) However, because of the trade-off
relationship between the stability and variability of the
FOFC, it is difficult to achieve both characteristics simul-
taneously. In 2009, a numerical model of pulse propagation
in air was reported by Balling et al.5) and applied by Cui
et al.6) to length measurements using interference fringes
between chirped pulses. However, it is still unknown why
different chirped pulses can interfere with each other. If one
only considers a single pulse with a Gaussian envelope, the
Fourier spectrum of a single chirped pulse in the frequency
domain is considered as a Gaussian function. There is no
reasonable explanation for the interference phenomenon,
because there is no logical indication of the relationship
between the two chirped pulses in neither the time nor
frequency domain.

As far as the distance-related measurement based on
the interference of different pulse trains is concerned, Yasui
et al.7) seem to have been the first to observe the interference
of different pulse trains in the 1990s using a femtosecond
laser source. In all of these previous works,4–7) the observed
interference was restricted to only one pair of pulse trains,
and few descriptions of the formation of interference fringes
were given.

Focusing on these issues, we analyzed the temporal
coherence function of an FOFC in our previous work,8) and
in the present work, we analyzed the formation of inter-
ference fringes using the multiple pulse train interference
(MPTI) from an FOFC light source. Our results showed
that the present multiple pulse train interferometric tech-
nique may offer a significantly different possibility to
challenge the FOFC directly linked distant metrology
problem. For simplicity, we neglected the dispersion and
absorption of optical elements over the FOFC illumination
bandwidth.

2. Principles

For convenience, let us consider the interference fringes
formed by a Michelson interferometer with a white light
source. Generally, we obtain the intensity of the recombina-
tion optical field at the beam splitter as�E-mail address: weidong@nanolab.t.u-tokyo.ac.jp
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Iðx; y; k; lÞ ¼ Sðx; y; kÞfaðx; yÞ
þ bðx; yÞj�½lðx; yÞ�j cos½ðk � lðx; yÞÞ�g; ð1Þ

where Sðx; y; kÞ is the spectral intensity of the light source,
aðx; yÞ and bðx; yÞ are the spatial intensity distributions
resulting from the swings of incident light intensity and
heterogeneity of mirror reflectance, respectively, k is the
wave number of the incident light, lðx; yÞ is the optical path
difference between the points of the measured object and
reference mirrors, and j�½lðx; yÞ�j is the correlation function
at each point of the measured object.

In the case of length measurement using a stable and
uniform white light source, eq. (1) can be simplified as

IðlÞ ¼ aþ bj�ðlÞj cosðk � lÞ; ð2Þ
where a ¼ Iref þ Iobj and b ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
IrefIobj

p
; Iref and Iobj are the

intensities reflected by the reference and object mirrors,
respectively. Here, we neglect the spatial distribution of the
light source used, which is also a controllable parameter for
length measurement indicated by Takeda et al.9) and used by
Duan et al.10,11)

Next, let us determine what will happen in a Michelson
interferometer when an FOFC instead of a white light source
is used. The correlation function of an FOFC can be
expressed as8)

j�ðlÞj ¼ F�1½Að f � fcÞ� �
Xþ1

m¼�1
�ðl� m� c� TRÞ; ð3Þ

where Að f � fcÞ is the envelope function of the FOFC power
spectrum, and fc is the center carrier frequency of the FOFC.
In the time domain, when the electric field packet repeats at
the pulse repetition period TR, the ‘‘carrier’’ phase slips by
�’ce to the carrier-envelope phase. In the frequency domain,
a mode-locked FOFC generates equidistant frequency comb
lines with the pulse repetition frequency frep ¼ 1=TR. For
more details about FOFC time- and frequency-domain
descriptions, we recommend refs. 12 and 13. Here, F�1

indicates the inverse Fourier transform, and � indicates the
convolution operation.

If we assume that the FOFC source used shows a Gaussian
spectral distribution, we can write

j�ðlÞj ¼ exp � 2
ffiffiffiffiffiffiffi
ln 2

p
l

Lcoh

� �2
" #

�
Xþ1

m¼�1
�ðl� m� c� TRÞ;

where Lcoh is the temporal coherence length of one pulse.
When introducing an FOFC with a Gaussian spectral

distribution into the Michelson interferometer, we obtain the
intensity of the recombination optical field at the beam
splitter as

IðlÞ ¼ aþ b� exp � 2
ffiffiffiffiffiffiffi
ln 2

p
l

Lcoh

� �2
" #

�
Xþ1

m¼�1
�ðl� m� c� TRÞ � cosðk � lÞ: ð4Þ

As mentioned above, all of the previous research
studies3–9) dealt with the single interference fringes, which
can be indicated by eq. (4).

Having summarized the steps of the formation of
interference fringes between two pulse trains, we now focus
on topics that consider the interference fringes formed by

an interference Michelson interferometer of multiple pulse
trains, as shown in Fig. 1.

As expressed in eq. (4), different interference fringes
occur between different pulse trains. Thus, the total inter-
ference fringes are then expressed as the superposition of
the MPTI fringes. We obtain the total interference fringes
as

IðlÞ ¼
X
n

IðlnÞ

¼
X
n

(
an þ bn � exp � 2

ffiffiffiffiffiffiffi
ln 2

p
ln

Lcoh

� �2
" #

�
Xþ1

m¼�1
�ðln � m� c� TRÞ � cosðk � lnÞ

)
: ð5Þ

Generally, we cannot further simplify eq. (5). Below,
since we discuss the length measurement in this work, we
only consider the case n ¼ 2.

In the case of a monochromatic light source, using the
interference, measuring length on the basis of the wave-
length of light is a general method. In the case of an FOFC,
using the interference, we propose a method of measuring
length on the basis of, instead of the wavelength of light,
the repetition interval between the pulses from an FOFC as
follows.

As shown in Fig. 2, for a given pulse repetition period TR,
the relationship of the distances between the reference
mirror and the two object mirrors, l and l2, and the arbitrary
and absolute distance between two object mirrors L to be
measured can be expressed as

l2 ¼ lþ L

¼ lþ ðc� TRÞðN þ "Þ
¼ lþ N � c� TR þ�12; ð6Þ

where N and " denote an integer (N ¼ 1; 2; 3; . . .) and an
excess fraction (1 � " � 0), respectively. As expressed in
eq. (6), to measure the arbitrary and absolute distance L, N,
and " should be determined from the MPTI fringes.

Fig. 1. (Color online) General case of multiple-pulse train interference.

Fig. 2. (Color online) Multiple-pulse train interference for length

measurement.
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As shown below, the integer N and the excess fraction "
can be directly determined by analyzing the resulting
temporal MPTI signals, unlike the case of the integer part
N because of the 2�-ambiguity of the single-wavelength
interferometer.

Note that �’ce is the phase slippage from pulse to pulse
per round-trip length c� TR, and by substituting eq. (6) into
eq. (5), we obtain

IðlÞ ¼ a1 þ b1 � exp � 2
ffiffiffiffiffiffiffi
ln 2

p
l

Lcoh

� �2
" #

� cosðk � lÞ

þ a2 þ b2 � exp � 2
ffiffiffiffiffiffiffi
ln 2

p ðlþ�12Þ
Lcoh

� �2
" #

� cosðk � ðlþ�12Þ � N ��’ceÞ: ð7Þ
First, let us investigate the case when the MPTI fringes

can be separated.
In the case of �12 > 2� LRey (LRey denotes the Rayleigh

limit), eq. (7) indicates that by moving the common
reference mirror Mref , we can observe the separated MPTI
fringes. Moreover, the distance between the peaks of the
separated MPTI fringes �12 and the measured length-related
carrier phase slippage of the separated MPTI fringes
N ��’ce can be presumed from the observed interference
fringes. The relationships of the distance between the peaks
of interference fringes �12, the integer N, and absolute
distance between object mirrors L are expressed as eq. (6).
Note that in the frequency domain, the offset shift frequency
fCEO and the pulse repetition frequency frep are the only two
key parameters used to stabilize an FOFC. The conclusion
drawn from the result of the theoretical analysis, that is,
an FOFC can be used for not only an extreme-precision
frequency metrology but also a high accuracy distant eval-
uation, is supported by the well-connected time- and fre-
quency-domain expressions �’ce ¼ 2�fCEO=frep and TR ¼
1=frep, which can be found in refs. 12 and 13. In other
words, with the knowledge of the stable values of fCEO and
frep in the frequency domain, we can perform an extreme-
precision frequency metrology, as described in ref. 13, and
in the time domain, we can perform a high-accuracy distant
evaluation by calculating N and �12 from the separated
MPTI fringes.

Owing to restricted equipment availability, we cannot
observe the carrier phase slippage �’ce for the measurement
of arbitrary length by stabilizing and changing the offset
shift frequency parameter fCEO. Regarding the separated
MPTI fringes, only the measurements of relative distance
changes of the interference fringe peaks (�12) were carried
out in a previous experiment.14) However, it can be con-
cluded that the feasibility of this proposed method is
unquestionable when we consider that the technology of
observation and control of the carrier phase slippage has
already been established.15–17)

Next, let us investigate the case when the MPTI fringes
overlap (�12 � 2� LRey). By moving the common refer-
ence mirror Mref , we can observe the overlapped MPTI
fringes, but we cannot confirm which of these fringes are
formed for two mirrors.

From eq. (7), if we assume a1 ¼ a2, b1 ¼ b2, and
L ¼ N � c� TR, we obtain the total interference fringes
as

IðlÞ ¼ a1 þ b1 � exp � 2
ffiffiffiffiffiffiffi
ln 2

p
l

Lcoh

� �2
" #

� cosðk � lÞ

þ a2 þ b2 � exp � 2
ffiffiffiffiffiffiffi
ln 2

p
l

Lcoh

� �2
" #

� cosðk � l�N ��’ceÞ: ð8Þ
By applying

cosðk � lÞ þ cosðk � l� N ��’ceÞ

¼ 2 cos k � l�N � �’ce

2

� �
cos N � �’ce

2

� �
; ð9Þ

we obtain the total interference fringes as

IðlÞ ¼ 2I1ðlÞ N ��’ce ¼ d � 2� ðd ¼ 0; 1; 2; . . .Þ
0 N ��’ce ¼ g� � ðg ¼ 1; 3; 5; . . .Þ;

�
ð10Þ

where I1ðlÞ ¼ a1 þ b1 � exp½�ð2 ffiffiffiffiffiffiffi
ln 2

p
l=LcohÞ2� � cosðk � lÞ

is the conventional white light interference fringe.
One can observe a complete constructive interference (see

Fig. 3) and a complete destructive interference (see Fig. 4)
between two pairs of pulse trains when the conditions N �
�’ce ¼ d � 2� (d ¼ 0; 1; 2; . . .) and N ��’ce ¼ g� �
(g ¼ 1; 3; 5; . . .) are met. As shown in the numerical
examples below, by calculating IðlÞ by shifting the
parameter �12 in eq. (7), it can be easily observed that the
total interference fringes reach an extreme value in both
states of the complete constructive and destructive inter-
ferences.

After analyzing the formation of the overlapped MPTI
fringes, we determine the method of directly linking an
FOFC to an absolute length measurement. The basic idea of
applying overlapped MPTI to the absolute length measure-
ment is simple. By controlling the carrier–envelope phase of
the pairs of pulse trains, one can make the total interference
fringes reflected by two mirrors reach an extreme value.
When these two interference fringes completely overlap, we
obtain only one fixed relation between the two mirrors

1(   )I l

2I (l  ) t Complete constructive 
interference fringes

t

1b

2b
t

1b + b

(l )I

= 2b2 1

Fig. 3. (Color online) State of complete constructive interference.

1(  )I l

2(l  )I t Complete destructive 
interference fringes

t

1b

2b

1b −  b2

(l )I t
= 0

Fig. 4. (Color online) State of complete destructive interference.
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(as L ¼ N � c� TR, N ��’ce ¼ d � 2�, or N ��’ce ¼
g� �) and the total interference fringes become mini-
mum or maximum. Conversely, by finding the relatively
extreme peaks of the total interference fringes, one can
obtain information on the absolute length between two
separated points. In a previous initial experiment,18)

destructive interferences between two pairs of pulse trains
were verified.

3. Numeral Simulations

To confirm the feasibility of the proposed length measure-
ment method based on the overlapped MPTI fringes, the
following simulations are performed. The simulations are
carried out with a Gaussian profile and a polarization-mode-
locked FOFC. The pulse duration and the repetition rate of
the FOFC are 180 fs and 100MHz, respectively. The output
wavelength of the pulse is centered at � ¼ 1560 nm with a
spectral width of �� ¼ 20 nm.

In the case of the complete constructive interference, the
interference fringes formed for the surfaces of Mref and
Mobj-1 are near the interference fringes formed for the
surfaces of Mref and Mobj-2, when the excess fraction
�12 between the two mirrors Mobj-1 and Mobj-2 is reduced.
Reduction of the excess fraction �12 means the distance
between the mirrors Mobj-1 and Mobj-2 approaches N �
c� TR in the optical experiment. As noted in Fig. 5, the
maximum peak intensity of the acquired interference fringes
periodically increases when the excess fraction �12

decreases. When the peaks of two interference fringes
completely overlap, by reducing the excess fraction �12

between the two mirrors Mobj-1 and Mobj-2 to zero, the peak
intensity of the acquired interference fringes reach the
maximum value of 2 arb. unit.

In the case of the complete destructive interference,
as noted in Fig. 6, by reducing the excess fraction �12

between the two mirrors Mobj-1 and Mobj-2, the maximum
value of the acquired interference fringes is periodically
reduced. When the peaks of two interference fringes
completely overlap, by reducing the excess fraction �12

between the two mirrors Mobj-1 and Mobj-2 to zero, the two
interference fringes cancel each other out. Thus, the

peak intensity of the acquired interference fringes becomes
0 arb. unit.

The results of the computer simulation indicate two
things. First, there is one-to-one relationship between the
relatively extreme peaks of the MPTI fringes and the
absolute length between two separated points. Second, it
is possible using the data processing method to find the
relatively extreme peaks of the MPTI fringes. Unlike the
previous experiment reported in ref. 18, this computer
simulation shows the mathematical proof and an executable
procedure of data processing of the proposed length
measurement method.

The conclusion drawn from the results of the computer
simulation is that the interferometry of multiple pulse trains
can determine absolute distance by employing overlapped
MPTI fringes.

4. Conclusions

In summary, we have analyzed the formation of interference
fringes in a more general case by considering MPTI and
expanded the potential application of MPTI. The basic
concept is, instead of the wavelength of light, in the case
of an FOFC, the repetition interval between adjacent
pulses can be used as length reference. To the best of
our knowledge, this is the first report that indicates the
possibility and shows the detailed proof of measuring
absolute distance by observing the interference fringes
formatted by MPTI. In the analysis of separated MPTI
fringes, the distance between the peaks of the separated
interference fringes and the measured length-related carrier
phase slippage of the interference fringes, which are linked
to the arbitrary and absolute length measurement, can be
presumed. In the analysis of overlapped MPTI fringes,
the use of the complete constructive and destructive inter-
ferences between two pairs of pulse trains for the absolute
length measurement has been numerically demonstrated.
The results of this investigation show that, with an
appropriate optical system, the MPTI can be used as a
powerful length measurement tool. Finally, the present
concept and analysis pave the way for an MPTI-based
metrology.
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Complete destructive 
interference

Excess fraction Δ 12 shift M
ax

im
um

 p
ea

k 
in

te
ns

ity
 o

f i
nt

er
fe

re
nc

e 
fr

in
ge

s 
(a

rb
. u

ni
t)

1 shift = 25.8 nm

0

0.2

Fig. 6. (Color online) Relationship between the maximum peak intensity

and change in excess fraction �12 [N ��’ce ¼ g� � ðg ¼ 1; 3; 5; . . .Þ].

D. Wei et al.Jpn. J. Appl. Phys. 50 (2011) 022701

022701-4 # 2011 The Japan Society of Applied Physics

takamasu
長方形



Acknowledgments

This research work was financially supported by the
Sasakawa Scientific Research Grant from the Japan
Science Society (22-216), the ‘‘Development of System
and Technology for Advanced Measurement and Analysis’’
Program at the Japan Science and Technology Agency
(to H.M.) and the Global Center of Excellence Program
on ‘‘Global Center of Excellence for Mechanical Systems
Innovation’’ granted to the University of Tokyo, from the
Japanese Government. D.W. gratefully acknowledges the
scholarships given by Takayama International Education
Foundation, Heiwa Nakajima Foundation, and the Ministry
of Education, Culture, Sports, Science and Technology of
Japan (MEXT).

1) Y. Nakajima, H. Inaba, K. Hosaka, K. Minoshima, A. Onae, M. Yasuda, T.

Kohno, S. Kawato, T. Kobayashi, T. Katsuyama, and F.-L. Hong: Opt.

Express 18 (2010) 1667.

2) K. Minoshima and H. Matsumoto: Appl. Opt. 39 (2000) 5512.

3) S. Yokoyama, T. Yokoyama, Y. Hagihara, T. Araki, and T. Yasui: Opt.

Express 17 (2009) 17324.

4) J. Ye: Opt. Lett. 29 (2004) 1153.

5) P. Balling, P. Kren, P. Masika, and S. A. van den Berg: Opt. Express 17

(2009) 9300.

6) M. Cui, M. G. Zeitouny, N. Bhattacharya, S. A. van den Berg, H. P.

Urbach, and J. J. M. Braat: Opt. Lett. 34 (2009) 1982.

7) T. Yasui, K. Minoshima, and H. Matsumoto: Appl. Opt. 39 (2000) 65.

8) D. Wei, S. Takahashi, K. Takamasu, and H. Matsumoto: Opt. Express 17

(2009) 7011.

9) M. Takeda, W. Wang, Z. Duan, and Y. Miyamoto: Opt. Express 13 (2005)

9629.

10) Z. Duan, Y. Miyamoto, and M. Takeda: Opt. Express 14 (2006) 655.

11) Z. Duan, Y. Miyamoto, and M. Takeda: Opt. Express 14 (2006) 12109.

12) F. W. Helbing, G. Steinmeyer, and U. Keller: IEEE J. Quantum Electron. 9

(2003) 1030.

13) J. Ye and S. T. Cundiff: Femtosecond Optical Frequency Comb: Principle,

Operation, and Applications (Springer, New York, 2005) Chap. 7.

14) D. Wei, S. Takahashi, K. Takamasu, and H. Matsumoto: Jpn. J. Appl. Phys.

48 (2009) 070211.

15) L. Xu, C. Spielmann, A. Poppe, T. Brabec, F. Krausz, and T. W. Hansch:

Opt. Lett. 21 (1996) 2008.

16) S. T. Cundiff: J. Phys. D 35 (2002) R43.

17) D. J. Jones, T. M. Fortier, and S. T. Cundiff: J. Opt. Soc. Am. B 21 (2004)

1098.

18) D. Wei, S. Takahashi, K. Takamasu, and H. Matsumoto: Opt. Lett. 34

(2009) 2775.

D. Wei et al.Jpn. J. Appl. Phys. 50 (2011) 022701

022701-5 # 2011 The Japan Society of Applied Physics

http://dx.doi.org/10.1364/OE.18.001667
http://dx.doi.org/10.1364/OE.18.001667
http://dx.doi.org/10.1364/AO.39.005512
http://dx.doi.org/10.1364/OE.17.017324
http://dx.doi.org/10.1364/OE.17.017324
http://dx.doi.org/10.1364/OL.29.001153
http://dx.doi.org/10.1364/OE.17.009300
http://dx.doi.org/10.1364/OE.17.009300
http://dx.doi.org/10.1364/OL.34.001982
http://dx.doi.org/10.1364/AO.39.000065
http://dx.doi.org/10.1364/OE.17.007011
http://dx.doi.org/10.1364/OE.17.007011
http://dx.doi.org/10.1364/OPEX.13.009629
http://dx.doi.org/10.1364/OPEX.13.009629
http://dx.doi.org/10.1364/OPEX.14.000655
http://dx.doi.org/10.1364/OE.14.012109
http://dx.doi.org/10.1109/JSTQE.2003.819104
http://dx.doi.org/10.1109/JSTQE.2003.819104
http://dx.doi.org/10.1143/JJAP.48.070211
http://dx.doi.org/10.1143/JJAP.48.070211
http://dx.doi.org/10.1364/OL.21.002008
http://dx.doi.org/10.1088/0022-3727/35/8/201
http://dx.doi.org/10.1364/JOSAB.21.001098
http://dx.doi.org/10.1364/JOSAB.21.001098
http://dx.doi.org/10.1364/OL.34.002775
http://dx.doi.org/10.1364/OL.34.002775
takamasu
長方形


