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a  b  s  t  r  a  c  t

This  paper  describes  a multi-probe  scanning  system  comprising  three  laser  interferometers  and  one
autocollimator  to  measure  a flat bar mirror  profile  with  nanometer  accuracy.  The  laser  interferometers
probe  the surface  of  the  flat bar  mirror  that  is  fixed  on top  of  a scanning  stage,  while  the  autocollimator
simultaneously  measures  the yaw  error  of  the scanning  stage.  The  flat  bar mirror  profile  and  horizon-
tal  straightness  motion  error  are  reconstructed  by an application  of  simultaneous  linear  equations  and
least-squares  method.  Measurement  uncertainties  of  the  flat  bar  mirror  profile  were numerically  eval-
uated  for  different  installation  distances  between  the  laser  interferometers.  The  average  measurement
uncertainty  was  found  to  be only  10 nm  with  installation  distances  of  10  and  21  mm  between  the  first  and
second,  and  first  and  third  interferometers,  respectively.  To  validate  the  simulation  results,  a  prototype
system  was  built  using  an  X–Y  linear  stage  driven  by  a stepper  motor  with  steps  of  1  mm  along  the  X
direction.  Experiments  were  conducted  with  fixed  interferometers  distances  of 10  and  21  mm,  as  in the
simulation,  on  a flat  bar mirror  with  a profile  known  to  an  accuracy  of  � =  632.8  nm.  The  average  value  of
two  standard  deviations  (95%)  of the  profile  calculated  over  ten  experiments  was  approximately  10  nm.
Other results  from  the  experiment  showed  that  the  system  can also  measure  the  yaw  and  horizontal
straightness  motion  errors  successfully  at a  high  horizontal  resolution.  Comparing  with  the  results  mea-
sured by  ZYGO’s  interferometer,  our  measured  data  excluding  some  edge  points  showed  agreement  to
within  approximately  10  nm.  Therefore,  we  concluded  that  our  measurement  profile  has  an  accuracy  in
the nanometer  range.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

With the development of super-precision machining technol-
ogy, accuracies of large-scale parts such as optical components,
silicon wafers, and liquid crystal panels are already on the order of
nanometers. It has also become increasingly important to evaluate
surface geometry (straightness, flatness) with nanometer accuracy.

Scanning systems with optical components have been widely
used in the field of engineering metrology to meet these require-
ments [1–4]. However, these scanning systems generally suffer
from positional and angular errors of the scanning stage prompt-
ing the need for measurement and calibration of the relative motion
errors. Currently, a laser interferometer system with a specialized
reflector is the typical instrument for measuring translational and
angular errors [5].  Moreover, a high accuracy autocollimator has
been developed and widely used for measuring rotational errors
and surface profiles [6,7]. These two components are considered
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to be the most reliable and accurate parametric calibration instru-
ments. Thus, a multi-probe scanning system that employs three
laser interferometers and one autocollimator has been developed
to measure a flat bar mirror profile with nanometer accuracy, while
multiple motion errors are measured simultaneously.

The principle of the multi-probe scanning method is based on
an error separation technique originally proposed by Whitehouse
in 1976 [8] and widely used in the precision measurement field
[9,10]. Multi-probe methods for measuring straightness and round-
ness have been extensively developed. These methods began with
research into sequential two-point and three-point methods [1,11]
that not only measure the straightness motion error of the guide-
way, but also the straightness of the objective surface. However,
these methods are limited in terms of horizontal resolution, and the
results are affected by systematic and random errors of the output
sensors. In order to improve the horizontal resolution, integration
multi-probe methods have been proposed [12]. However, in the
application of the integration multi-probe method it is still difficult
to compensate for the systematic errors of the probes for zero devi-
ation [13,14]. A spatial frequency method using a data processing
method by discrete Fourier transform (DFT) is considered to be a
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modification of the three-point roundness measurement method
[15]. The spatial frequency domain two-point method which com-
bines two data sets from two-point methods with different sensor
distances has been proposed by Elster [16,17].  The calibration of
systematic errors for this method has also been discussed [18]. In
addition, multi-probe methods utilizing more than three displace-
ment sensors and using different software algorithms have been
proposed [2,19,20]. Other compensation methods such as adding
one autocollimator or a reversal operation have been developed to
improve the multi-probe method [21].

In this paper, we begin by setting up simultaneous linear equa-
tions that express the linear relationship between the measured
parameters and the unknowns. We  then analyze the measure-
ment uncertainty for the flat bar mirror profile and calculate
the unknown parameters by applying the least-squares method
[22–26].  The random and systematic errors of the probes are con-
sidered and the measurement uncertainty is calculated by the
simulation. Comparing with the experiment results, the multi-
probe scanning method can precisely reach nanometer scale
measurement.

2. Measurement principle

2.1. Principle of multi-probe scanning method

In the multi-probe scanning system, the laser interferometers
probe the surface of a flat bar mirror that is fixed on top of an X–Y
scanning stage, while the autocollimator simultaneously measures
the yaw error of the scanning stage [22]. Unlike the case where the
displacement sensors are fixed on a moving scanner, the laser inter-
ferometers are mounted on stationary housings, as shown in Fig. 1.
During the measurement, the scanning stage moves in steps. And at
each step, a computer automatically collects the data from the laser
interferometers and the autocollimator. Let the corresponding laser
interferometers and autocollimator outputs be m1(n), m2(n), m3(n),
and ma(n), respectively, then they can be expressed as follows:⎧⎪⎨⎪⎩

m1(n) = f (xn + 0) + es(n) + 0 · ey(n) + u1 + b0
m2(n) = f (xn + D1) + es(n) + D1 · ey(n) + u2 + b0
m3(n) = f (xn + D2) + es(n) + D2 · ey(n) + u3 + b0
ma(n) = ey(n) + ua

, n = 1...Ns . (1)

Here f(xn) denotes the flat bar mirror profile; ey(n) and es(n)
denote the yaw and horizontal straightness motion errors of the
moving stage, respectively at each step n; D1 is the installation
distance between the 1st and 2nd laser interferometers; D2 is the
installation distance between the 1st and 3rd laser interferometers;
u1, u2, u3 and ua are the offsets of each probe; and b0 is an unknown
parameter in the measurement. The number of sampling points of
the flat bar mirror profile is N and the number of sampling points of
the motion errors is given by Ns = N–d2. The parameter d2 is defined
as d2 = D2/s that is the normalized distance of the 3rd laser interfer-
ometer. The measuring step distance of the scanning stage is s and
L = n × s specifies the moving scale of the stage, as shown in Fig. 1.
For the analysis here, the step distance s is determined by the num-
ber of the laser interferometers and their relative distances. We
discuss how to select the value of s in Section 2.2.

2.2. Data processing

2.2.1. Simultaneous linear equations
In order to eliminate the unknown parameters from Eq. (1), we

define the supplementary function Eq. (2).{
e1(n) = es(n) + u1 + b0
e2(n) = ey(n) + ua

cj = uj − u1 − Dj · ua, j = 2, 3
,  n = 1...Ns . (2)

Here e1(n) and e2(n) denote horizontal straightness motion es(n)
and yaw errors ey(n) with systematic and random errors at each
step, respectively. Then, substituting Eq. (2) into (1),  the measure-
ment equations can be simplified as follows:⎧⎪⎨⎪⎩

m1(n) = f (xn) + e1(n)
m2(n) = f (xn + D1) + e1(n) + D1 · e2(n) + c2
m3(n) = f (xn + D2) + e1(n) + D2 · e2(n) + c3
ma(n) = e2(n)

, n = 1...Ns . (3)

According to the linear relationship between the measured data
and the objective parameters, the whole measurement process can
be expressed simply as a set of simultaneous linear equations,

Y = AX, (4)

where Y denotes the measured vectors

Y = [m1(1),  · · ·,  m1(Ns), · · ·,  m3(1),  · · ·,  m3(Ns), ma(1),  · · ·, ma(Ns)]
T .

(5)

and A is the Jacobian matrix constructed by the differential of Y
and X. The unknown vectors X are the flat bar mirror profile and
the motion errors.

X = [f  (x1), · · ·,  f (xN−2), e1(1),  · · ·,  e1(Ns), e2(1), · · ·,  e2(Ns), c2, c3]T .

(6)

From Eq. (6),  only N − 2 components of the flat bar mirror profile
can be varied independently. The best straight-line fit of the result-
ing profile f(xn) is used to calculate the last two  points of the profile.
Each point of the profile can be changed by any straight line when
e1(n) and e2(n) are correspondingly changed at the same time.

N∑
n=1

xnf (xn) =
N∑

n=1

f (xn) = 0. (7)

The constraints of Eq. (7) can, for instance, be considered explic-
itly by substituting f(xN−1) and f(xN) as follows:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

f (xN−1) =
N−2∑
n=1

(n − N)f (xn),

f (xN) =
N−2∑
n=1

(N − 1 − n)f (xn).

(8)

For a solution of the matrix X to exist according to Eq. (4),  two
additional conditions must be satisfied.

1. The row number A (P) must be greater than or to equal the
column number A (Q). (P � Q).

2. The rank of A must be equal to the column number A (Q).

For condition 1 to be satisfied, P and Q are calculated as follows:

P = Ns × (3 + 1) = 4Ns,
Q = N − 2 + 2 · Ns + 3 − 1 = 3Ns + d2,
P ≥ Q ⇒ Ns ≥ d2.

(9)

Eq. (9) then sets Ns ≥ D2/s, which means that the number of
sampling points of the motion errors is greater than or equal to
the normalized distance of the 3rd laser interferometer. The least-
squares solution exists when this condition is met.

For condition 2, the rank of A is determined by the normal-
ized distances of the laser interferometers (d1, d2). Therefore, the
greatest common divisor (GCD) of d1 and d2 should be 1. (GCD (d1,
d2) = 1).

The parameters D1, D2, and s are chosen to satisfy these condi-
tions.
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Fig. 1. Principle of multi-probe scanning method.

2.2.2. Least-squares method
From Eq. (4),  the measured model Y comprises a linear combi-

nation of the objective parameters X. In the measurement system,
Y is assumed to have random errors. The sources of error for each
measured vector, which follow the normal distribution, are depen-
dent. Accordingly, the error matrix S that denotes the error variance
between each measurement point is given by

S =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�2
1

. . .
�2

1

0

. . .

�2
3

. . .
�2

3

0

�2
a

. . .
�2

a

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (10)

Here �1 denotes the standard deviation of the 1st laser interfer-
ometer, �3 is the standard deviation of the 3rd laser interferometer,
and �a is the standard deviation of the autocollimator.

Utilizing the linear least-squares method to calculate the objec-
tive matrix X, we obtain:

X =
(

AtS−1A
)−1

AtS−1Y. (11)

2.3. Reconstruction of uncertainty

From the reconstruction procedure, the measurement uncer-
tainty associated with the reconstructed flat bar mirror profile can
be derived. The reliability of the reconstructed data and its associ-
ated measurement uncertainty can be assessed via a criterion. The
associated uncertainty of the measurement process is calculated
via the error propagation matrix SX that is deformed in the least-
squares method, as shown in Eq. (12). The vectors on the diagonal

of SX are the square values of the measurement uncertainties of the
flat bar mirror profile �(n) from 1 to N − 2.

SX = (ATS−1A)
−1 =

⎛⎝ r11 · · · r1n

...
. . .

...
rn1 · · · rnn

⎞⎠ , (n = 1, · · ·,  N − 2) , (12)

�(n) = √
rnn, (n = 1, ..., N − 2) , (13)⎧⎨⎩ �(N − 1) =

√∑N−2
i=1

∑N−2
j=1 (i − N)(j − N)SX (i, j),

�(N) =
√∑N−2

i=1

∑N−2
j=1 (N − 1 − i)(N − 1 − j)SX (i, j),

(14)

� = �(n), (n = 1, ..., N) . (15)

Eq. (13) denotes the measurement uncertainty of sampling
points from 1 to N − 2, and �(N − 1) and �(N) denote the uncer-
tainty of the last two points, respectively. From Eqs. (12) and (14),
we can note the uncertainties associated with N and �x. Thus, the
measurement uncertainty values in every measurement points are
obtained from Eq. (15).

3. Uncertainty simulation

The multi-probe scanning method was  evaluated theoretically
by computer simulation. From Eq. (3),  we set up three laser inter-
ferometers and one autocollimator in the simulation model. For
the simulation, f(xn) is predefined in a profile curve; e1(n) and e2(n)
are random numbers from the initialization; L is set to 100 mm.
According to the GCD condition, we  choose different sets of D1
and D2 values, with s set to 1 mm,  as shown as Table 1, in order
to analyze the factors influencing the measurement uncertainty
of the flat bar mirror profile. Then, each measured data can be
substituted by the parameters mentioned above. The standard
deviation of the laser interferometers and autocollimator were set
to �1 = �2 = �3 = 3.5 nm and �a = 0.23 �rad. These values were taken

Table 1
Different installation distances of laser interferometers.

Group D1 (mm) D2 (mm)

No. 1 2 5
No. 2 4 9
No. 3 5 11
No. 4 10 21
No. 5 15 31
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Fig. 2. Relationship between different installation distances of laser interferometers
and measurement uncertainty of flat bar mirror profile for �1 = �2 = �3 = 3.5 nm and
�a = 0.23 �rad.

from the model specifications (laser interferometers: 10705A, Agi-
lent; autocollimator: Elcomat 3000, Moller-Wedel Optical). From
Eq. (11), we can calculate the objective profile by the simulation.

The measurement uncertainty of objective profile can be derived
from the reconstruction procedure as shown in Eq. (11). Thus, we
can numerically simulate the measurement uncertainty of flat bar
mirror � from Eqs. (12) and (14), and the simulation results of 2�
are shown in Fig. 2 with different installation distances of laser
interferometers.

Fig. 3 shows the relationship between different sets of instal-
lation distances of laser interferometers and the average values
of uncertainty from the results in Fig. 2. From Fig. 3, the average
uncertainty values increase almost continuously with increasing
installation distance (D1, D2). Thus, the smaller the installation dis-
tances, the higher the accuracy. However, it is difficult to arrange
the installation distances to be less than 6 mm because the diam-
eter of the laser beam is 6 mm.  As a result, we chose group No.
4 (D1 = 10 mm,  D2 = 21 mm)  for our experiment. The average mea-
surement uncertainty is approximately 10 nm,  which is acceptable
for nanometer scale measurements.

4. Experiment

4.1. Experimental setup

The experiment is designed to measure the flat bar mirror profile
with nanometer accuracy and was performed by three laser inter-
ferometers and one autocollimator operating simultaneously. Fig. 4
shows a block diagram of the experiment, which is composed of a
flat bar mirror, an XY stepper motor stage, laser interferometers,
receivers, beam splitters, optical refection mirrors, and an autocol-
limator. In the experiment, the laser interferometers probed the
surface of the flat bar mirror which is fixed on top of the scanning
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Fig. 3. Relationship between different installation distances of laser interfer-
ometers and average measurement uncertainty of flat bar mirror profile for
�1 = �2 = �3 = 3.5 nm and �a = 0.23 �rad.

Fig. 4. Block diagram of experimental setup.

stage, while the autocollimator simultaneously measured the yaw
error of the scanning stage by the reference mirror 6 (Fig. 4). The
scanning direction along the X-axis was performed from right to
left as shown in Fig. 4. A feature of this optical design is that we can
adjust the installation distances of interferometer by moving the
corresponding mirror (mirrors 3, 4, and 5). The laser interferome-
ters are denoted LI1, LI2, and LI3, respectively, in Fig. 4.

In the equipment setup, the sampling length of the flat
bar mirror is 100 mm because the valid size of the flat bar
mirror is approximately 100 mm × 30 mm with an accuracy of
� = 632.8 nm.  The actual experimental setup is shown in Fig. 5. Set-
ting D1 = 10 mm,  D2 = 21 mm,  and s = 1 mm,  and for N = 100, gives
Ns = N − d2 as 79.

4.2. Stability of each sensor

The accuracies of the laser interferometers are sensitive to the
measurement environment and other external factors. Therefore,
we  measured the stability of each sensor at the first sampling
point before performing the experiment. The stability results of
the laser interferometers and the autocollimator are shown in
Figs. 6 and 7, respectively. The measuring time was  5 min and
this is approximately the same duration as a whole measurement
process. The standard deviations of the laser interferometers and
the autocollimator were calculated to be �1 = �2 = �3 = 3.5 nm,  and
�a = 0.23 �rad.

4.3. Experiment results

The yaw errors along the X-axis e2(n) from ten repetitions of the
experiments are presented in Fig. 8. The range of e2(n) is approx-

Fig. 5. Actual experimental setup.
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imately 40 �rad. The horizontal straightness motion errors along
the X-axis e1(n), obtained by applying the simultaneous equation
and least-squares method, are shown in Fig. 9. The range of e1(n)
is approximately 2 �m.  The reconstructed profiles of the flat bar
mirror f(xn) are shown in Fig. 10,  and the profiles are reproduced
well for each of the ten measurements.

The two standard deviations (95%) values of the flat bar mir-
ror profile calculated over the ten experiments are shown in
Fig. 11 indicated by the red curve; the average value is approx-
imately 10 nm.  According to Fig. 2, the simulated measurement
uncertainty (2�) is shown in Fig. 11 and indicated by the black
curve with parameters set as per group No. 4. Comparing these
two curves, we conclude that the two standard deviations of
the flat bar mirror profile is mainly fitting the range of 2�.
The multi-probe scanning method performs well with a small
deviation of 10 nm in the measurement of the flat bar mirror pro-
file, and measures the horizontal straightness motion and yaw
errors successfully with a high horizontal resolution. Moreover,
in the comparison between the simulated measurement uncer-
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tainty (±2�) and the difference curves between the average value
of ten profiles and each profile (Fig. 12), we note that the differ-
ence curves mainly lie with ±10 nm (±2�) verifying nanometer
accuracy.

4.4. Comparison with ZYGO’s interferometer system

To confirm the measurement accuracy of the flat bar mir-
ror profile, we  compared our profile data with results measured
by ZYGO’s interferometer system. The average flat bar mirror
profile for ten experiments is indicated in Fig. 13 by the red
curve. The profile measured by the ZYGO’s interferometer sys-
tem is indicated by the black curve. The comparison shows that
the two profiles are approximately the same within the devia-
tion range of 10 nm,  excluding some points at the edge of the
mirror. This is a limitation of the multi-probe scanning method

0

10

20

30

40

0 10 20 30 40 50 60 70 80 90 100

U
nc

er
ta

in
ty

 (n
m

)

Measuring scale of flat bar mirror (mm)

2σ

2*Std.

Fig. 11. Comparison of two standard deviations of ten times flat bar mirror profiles
(red line) with simulated measurement uncertainty (black line) (2�). (For interpre-
tation of the references to color in this figure legend, the reader is referred to the
web  version of the article.)
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because these points can only be measured by a single displacement
sensor.

5. Conclusions and future works

We have devised a multi-probe scanning method using three
laser interferometers and one autocollimator to measure a flat bar
mirror profile with nanometer accuracy. In the measurement sys-
tem, the flat bar mirror profile is reconstructed by the application of
simultaneous linear equations and least-squares method, and the
yaw and horizontal straightness motion errors of the scanning stage
can be measured. From the simulation and experiment results, we
can make the following conclusions.

The simulation results indicate that the average measurement
uncertainty of the flat bar mirror profile increases almost contin-
uously with increasing installation distances between the laser
interferometers (D1, D2). When we set D1 = 10 mm,  D2 = 21 mm,
s = 1 mm,  �1 = �2 = �3 = 3.5 nm,  and �a = 0.23 �rad, the average mea-
surement uncertainty is approximately 10 nm.

From Section 2.3,  we found that the standard deviation of
each sensor is essential to the measurement uncertainty. Thus,
we measured the stability of each sensor at the starting point
in the real environment before performing the experiment. The
standard deviations of the laser interferometers are the same
�1 = �2 = �3 = 3.5 nm,  and standard deviation of the autocollima-
tor was calculated as �a = 0.23 �rad and these were defined as the
actual parameters for the experiment.

From the experiment, the two standard deviations of the flat bar
mirror profile is mainly fitting the simulated measurement uncer-
tainty of 10 nm (2�). Moreover, the difference curves between the
average value of ten profiles and each profile mainly lie within
the simulated measurement uncertainty of ±10 nm (±2�). In addi-

tion, the multi-probe scanning system can also measure the yaw
and horizontal straightness motion errors successfully with a high
horizontal resolution.

Comparing with the results measured by ZYGO’s interferometer,
our measured data excluding some edge points showed agreement
to within approximately 10 nm.  Therefore, we concluded that our
measurement profile has an accuracy in the nanometer range. How-
ever, there are some variations in the flat bar mirror profile of our
measurement results. They are due to some additional error sources
in the measurement process, such as the accuracy of moving the
scanning stage and the misalignment of the optical devices. These
error sources will be analyzed in greater detail in the future.
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