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Synthetic adjacent pulse repetition interval length
method to solve integer ambiguity problem: theoretical
analysis
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This paper describes a novel approach for realizing femtosecond optical frequency comb (FOFC)-based length measurement. This approach
is based on the analogy between the phase unwrapping problem and the integer ambiguity problem. Because the conventional synthetic
wavelength method can solve the former, we investigated the possibility of using a synthetic adjacent pulse repetition interval length
method to solve the latter. The results of theoretical analyses and numerical investigations show the feasibility of the proposed method.
Our results should contribute toward the further development of FOFC-based length measurement methods.
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1 INTRODUCTION

Recently, numerous studies [1, 2] have focused on femtosec-
ond optical frequency comb (FOFC)-based length measure-
ment because this approach provides a highly accurate fre-
quency reference for measurements. Length measurement us-
ing an FOFC source has distinct measurement characteristics
[3, 4] and applications [5]–[7]. Many special techniques [8]–
[11] have been developed to exploit these distinct character-
istics (especially the temporal coherence) of FOFC light. A re-
search group at the National Institute of Advanced Industrial
Science and Technology has extensively studied length and
length-related measurements using FOFC [12]–[16]. In par-
ticular, Minoshima and Matsumoto have pioneered the use
of FOFC-based approaches for measuring large lengths with
their original demonstration of the measurement of a 240-m
distance [12].

Figure 1 shows a schematic of the interference fringes ob-
tained by a conventional Michelson interferometer with an
FOFC light source. The correlation (autocorrelation and cross
correlation) functions between two pulse trains afford two
length scales: the central wavelength λcen and the adjacent
pulse repetition interval length (APRIL) c × TR, where c is the
speed of light in vacuum and TR, the pulse repetition period.
When seeing one correlation function, the distance between
the two peaks of the interference fringes can be understood to
be half the central wavelength of FOFC. The size of one corre-
lation function corresponds to the temporal coherence length
of a single pulse, which is of the order of micrometers. In gen-
eral, the central wavelength can be continuously used as the
length scale within this range. When looking at the whole cor-
relation functions, the distance between the two peaks of the

envelope of the interference fringes can be understood to be
half the APRIL of FOFC. In general, the size of the APRIL is of
the order of meters. Furthermore, the existence of the APRIL
is discrete. Below, we discuss how to perform length measure-
ment by using the central wavelength and/or APRIL.

First, we consider the possibility of using the central wave-
length of an FOFC as the length scale. Because the range of
one correlation function is too short (of the order of microm-
eters) to cover a long distance (for example, of the order of
meters), it is impossible to simply use the central wavelength
as a length scale in an ordinary Michelson interferometer. We
can extend the range to observe the correlation function by
using multiple reference mirrors. However, because the target
could be as much as around 10000 times larger than the range
of one correlation function, the feasibility of this approach is
low.

A single-wavelength helium–neon (He–Ne) laser is used as
a length standard. The use of an FOFC to produce a sin-
gle wavelength appears promising because we can use a
He–Ne laser interferometer by simply changing the light
source. However, a wavelength-based interferometer involves
two main problems. The first one is the 2π ambiguity. As in
the case of a He–Ne laser interferometer, we can only detect
the phase of the interference signal. The phase detection prob-
lem involves the 2π ambiguity. The second one is the realiza-
tion of a single wavelength.

Three schemes can be used to produce a single wavelength
from an FOFC. The first scheme is to filter a single wavelength
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FIG. 1 Schematic of interference fringes formed by a multi-pulse train.

from an FOFC. The power of an FOFC is of the order of tens
of milliwatts. Furthermore, an FOFC has numerous (of the or-
der of millions) frequency elements (in other words, wave-
lengths). Therefore, the power of a single wavelength is of the
order of nanowatts, which is too weak for practical measure-
ments. The second scheme is to lock a single wavelength to
the FOFC. For example, a laser diode was locked to an FOFC
to achieve a single wavelength with strong power and high
stability [17]. However, because we can only use a few fre-
quencies from among the million or so that are available, the
utilization efficiency of the FOFC is poor. The third scheme
is to heterodyne two FOFC laser sources directly. By locking
two FOFCs with different center frequencies, a single wave-
length can be achieved as the bit signal (frequency difference)
[18]. However, this scheme requires a complex feedback sys-
tem. Therefore, further developments are required to achieve
length measurement by using single wavelengths from an
FOFC.

Next, we consider the possibility of using the APRIL of an
FOFC as a length scale. The stability of an APRIL can be un-
derstood as follows. Because an APRIL is a set of superposi-
tions of different single frequencies, if each frequency is sta-
ble, the APRIL is also steady at the same level. If the phase
relationship among different frequencies is changed, it is im-
possible for the oscillation of the pulse train. The observation
of the cross-correlation function shows that the phase relation-
ship between frequencies is maintained. As long as the cross-
correlation function can be observed, an FOFC-based method
can be used with APRIL as the length scale.

Studies have already demonstrated FOFC-based methods us-
ing an APRIL as the length scale by exploiting the stabil-
ity of APRIL [5]–[7]. The autocorrelation function and the
cross-correlation function of the pulse trains are detected si-
multaneously by combining two (an ordinary and an unbal-
anced) Michelson interferometers. The distance between the
two peaks of the envelope of the autocorrelation function and
the cross-correlation function can be expressed as a function
of the APRIL. The signal is detected by intensity detection
[5]–[7]. A heterodyne technique using an optical frequency
comb to suppress the noise was presented in Ref. [5]. A Fabry–
Perot etalon to change the APRIL of an optical frequency comb
was reported in Ref. [6]. A heterodyne interferometer for po-
sition measurement with an acoustic-optical modulator and a
piezo stage has been developed [7]. Generally, however, these
methods suffers from the integer ambiguity (IA) problem. We
have previously [3] used shutters set in front of the reflecting

surfaces to turn the reflected light on and off in order to distin-
guish different reflecting surfaces. This paper presents a new
approach to solve this IA problem for an absolute and arbi-
trary long-distance measurement.

The IA problem is studied from the viewpoint of the symme-
try with the phase unwrapping (PU) problem. The remainder
of this paper is organized as follows. Section 2 briefly reviews
the PU problem and the synthetic wavelength method, and
then, it describes the IA problem and the proposed method.
Section 3 presents the numeral experiments. Finally, Section 4
summarizes the main conclusions and future studies.

2 PRINCIPLES

2.1 Phase unwrapping problem and
synthetic wavelength method

The PU problem, which has been extensively studied pre-
viously [19]–[21], is only briefly reviewed here to introduce
basic concepts. Assuming h to be the distance between two
points, the PU problem can be expressed as

h = λϕ
/

2π = λ(ϕN + ϕΔ)
/

2π (1)

Here, λ is the wavelength of the light source used for
the measurement, and ϕN

/
2π and ϕΔ

/
2π are the inte-

gral part (ϕN
/

2π: integer) and the excess fractional part
(0 ≤ ϕΔ

/
2π < 1) of the phase ϕ, respectively.

By using the optical heterodyne measurement method [22],
Fourier transform method [23], and fringe scanning method
[24], we can measure the excess fraction part ϕΔ. By us-
ing the optical heterodyne measurement method, because the
beat frequency of two different frequencies is low, an excess
fractional part can be detected by using a phase meter. The
other two methods find an excess fractional part by using the
tan−1[] function. The excess fractional part can be calculated
assuming that −2π ≤ ϕΔ < 2π holds. A phase ambiguity cor-
responding to the integral part of the phase remains. The PU
problem is nothing but the problem of finding the true value
ϕ from the excess fractional part ϕΔ, i.e., finding ϕN .

Techniques for solving the PU problem using two or more
wavelengths [25]–[30], called as the synthetic wavelength
method, have already been introduced. We can understand
this individual-point-based PU process as follows.

The distance h can be expressed as follows by using two wave-
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lengths.

h = λi ϕi/2π = λ1(ϕN1 + ϕΔ1)/2πλ2(ϕN2 + ϕΔ2)/2π (2)

Here, λ1 and λ2 are the two wavelengths. When h is measured
by using different wavelength λ(i), ϕN(i) and ϕΔ(i) are the in-
tegral and the excess fractional parts of the phase ϕi, respec-
tively.

By using two wavelengths, the following synthetic wave-
length is obtained:

Λ12 = λ1λ2
/|λ1 − λ2| (3)

Furthermore, h can be expressed as

h = Λ12(ϕN12 + ϕΔ12)
/

2π (4)

For example, the synthetic frequency Λ12 becomes 3.33 μm
when we assume λ1 as 532 nm and λ2 as 633 nm. As described
in previous studies [19, 20], when we know that h < Λ12 in
advance, we can estimate the integral part ϕN12 based on the
two excess fractional parts. Then, the true value of the distance
h can be unambiguously determined.

2.2 Integer ambiguity problem and
synthetic APRIL method

When an arbitrary length h is assumed to be a function of
APRIL AL, it can be written as

h = AL × T = AL × (N + Δ) (5)

Here, N and Δ are the integral and the excess fractional part,
respectively.

In previous experiments, we showed that Δ can be measured
from the distance between the peaks of the envelopes of the
observed interference fringes in a multi-pulse train interfero-
meter [31]. When measuring h with a single APRIL, the IA
problem occurs because we do not know the positional rela-
tionship between the two pulse trains that generate the cross-
correlation function.

From the symmetry between Eq. (1) and Eq. (5), we propose
the synthetic APRIL (S-APRIL) method in which two different
APRILs are used to produce a synthetic APRIL to solve the IA
problem.

The distance h measured by using two APRILs can be ex-
pressed as

h = AL1 × (N1 + Δ1) = AL2 × (N2 + Δ2) (6)

Here, AL1 and AL2 (AL2 < AL1) are the two APRILs. N(i)
and Δ(i)are the integral and the excess fractional part of APRIL
AL(i), respectively.

The S-APRIL AL12 is defined as

AL12 = AL1 AL2
/|AL1 − AL2| (7)

AL12 becomes 12 m when AL1 is 4 m and AL2 is 3 m.

FIG. 2 Unambiguous range and achievable accuracy of S-APRIL method.

By using this S-APRIL, h can be expressed as

h = AL12(N12 + Δ12) (8)

Inspired by [25]–[30], if we know that h < AL12, as described
below, the true value of an absolute length h can be uniquely
decided in the range of AL12. We set

Δ12 = Δ2/AL2 − Δ1/AL1 (9)

Because h < AL12, we have

0 ≤ (N12 + Δ12)
/

AL12 < 1 (10)

Because 0 ≤ Δ1/AL1 < 1 and 0 ≤ Δ2/AL2 < 1, we obtain
−1 ≤ Δ12 < 1. Therefore, we can obtain h as

h =

{
AL12(Δ12), 0 ≤ Δ12/AL12 < 1

AL12(1 + Δ12). − 1 ≤ Δ12/AL12 < 0
(11)

Next, we evaluate the accuracy of the S-APRIL method.

The accuracy of the S-APRIL obtained from Eq. (7) can be ex-
pressed as

δAL12/AL12 = AL12(δAL12/AL1
2 − δAL12/AL2

2) (12)

In general, we can assume that different APRILs are equally
stable. We have δAL1/AL1 = δAL2/AL2 = δAL/AL, and Eq.
(12) can be approximated as

δAL12/AL12 ≈ [
√

2AL1

/
(AL1 − AL2)](δAL

/
AL) (13)

Nowadays, an FOFC with stability δAL
/

AL < 1 × 10−10

can generally be easily achieved (for example, see [32]).
When AL1 is 4 m, AL2 is 3 m and δAL12/AL12 ≈ 5 × 10−10.
In another case, when AL1 is 4 m, AL2 is 3.99 m and
δAL12/AL12 ≈ 5 × 10−8. Furthermore, the unambiguous
range of the measurement becomes 1500 m. Figure 2 show the
unambiguous range (log scale) and the achievable accuracy
(log scale) as a function of the length of the APRILs. In
Figure 2, the horizontal axis indicates the length of AL2 in
meters (AL1 is 4 m and AL1 > AL2). From Eq. (13), we
understand that by improving the frequency stability, we can
increase the measurement accuracy.
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FIG. 3 Simulation of S-APRIL method. (a) is the object, (b,c) is the excess fractional

parts for different APRILs, (d) is the subtraction of the two excess fractional parts, (e)

is the estimated length, (f) shows the difference between the object and the estimated

length.

3 NUMERAL SIMULATIONS

Figure 3 shows the numeral simulation of the S-APRIL
method. The object x(n) measurement (n is the sample index)
is considered to be a sin wave with amplitude of 12 m, as
shown in Figure 3(a). In Figure 3(a)–(c) and (e,f), the unit of
the vertical axis is meters. The horizontal axis in Figure 3
indicates the sample index (arb. unit). The excess fractional
parts Δ1 and Δ2 for APRILs for AL1 = 4 m and AL2 = 3 m
are shown in Figure 3(b) and (c), respectively. The subtraction
of the two excess fractional parts Δ12, as given in Eq. (9), is
shown in Figure 3(d). In Figure 3(d), the unit of the vertical
axis is arb. unit. Based on the value of Δ12, the measured
length can be obtained from Eq. (11) as shown in Figure 3(e).
To clarify the measurement accuracy, Figure 3(f) shows the
difference between the object (Figure 3(a)) and the measured
length (Figure 3(e)).

Figure 3(f) shows that we can accurately measure a length
within 12 m and that if the value of the object is beyond the
range of the synthesized APRIL, an error (peak in Figure 3(f)
having an amplitude of 12 m) occurs.

Because the measured excess fractional parts may be noisy, the
length measurement for a practical real-world application is
actually quite challenging. We discuss this noisy case by using
the same computer simulation to illustrate the effects of noise
on the estimation process of an integral part. Suppose that we
have the discrete signal x(n), and then, we add white noise
wn(x) to this signal as follows:

xnoise(x) = x(n) + wn(n) (14)

Then, we measure the noisy signal as

Δnoise(x) = I[xnoise(n)] (15)

Here, I() is used to measure the excess fractional part. We as-
sume that the two excess fractional parts share the same level
but have different noise.

FIG. 4 Simulation for low level of noise. (a) is the two noisy object, (b,c) is the excess

fractional parts for different APRILs, (d) is the subtraction of the two excess fractional

parts, (e) is the estimated length, (f) shows the difference between the object and

the estimated length.

FIG. 5 Simulation for high level of noise. (a) is the two noisy object, (b,c) is the excess

fractional parts for different APRILs, (d) is the subtraction of the two excess fractional

parts, (e) is the estimated length, (f) shows the difference between the object and

the estimated length.

We follow the same process to solve the noisy IA problem.
First, we set the variance of the noise to a value of 10−6 which
means that we can measure a distance of 1 m with an ac-
curacy of the order of micrometers. The result is shown in
Figure 4. With the exception of Figure 4(a), each graph in
Figure 4 shows the same calculation as that performed and
shown in Figure 3. Figure 4(a) shows the two noisy signals
(solid line and dashed line) and the difference between them
(dotted line). The average value (without the value beyond
the range of the S-APRIL) of the difference between the object
and the measured length is 1.2 × 10−6 m, and its variance is
3.6 × 10−9 m. In this case, the noise does not adversely affect
the estimation of the integral part.

The noise variance is now set to a higher value of 10−2 (Fig-
ure 5). We can observe that the higher noise level seriously
affects the estimation of the integral part because many sig-
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nals (with true values near 0 m or 12 m) exceed the unam-
biguous range of the measurement. Owing to the existence of
a fake estimation, the estimation of the integral part of the sig-
nal, which is close to the measurement range, becomes quite
challenging. The average value (without the value at which er-
rors occur) of the difference between the object and the mea-
sured length is 0.008 m, and its variance is 0.08 m. We have
found that in the case of a high level of noise, by selecting
the unambiguous measurement range as being approximately
two times of the target object, the S-APRIL method is feasible.
For example, if the unambiguous measurement range is 12 m,
length measurement in the range from 3 to 9 m is very stable.

4 CONCLUSIONS

We introduced the symmetry of the PU problem and the IA
problem. When an arbitrary length was measured as a func-
tion of the APRIL, from this symmetry, we proposed the syn-
thetic APRIL (S-APRIL) method to determine the integer part.
As a synthetic wavelength method that can eliminate the am-
biguity of 2π and determine an absolute and arbitrary short
length (of the order of micrometers), S-APRIL can disam-
biguate the repeat interval and determine an absolute and ar-
bitrary long length (of the order of meters). We confirmed the
feasibility of the S-APRIL method and its measurement accu-
racy through a numeral simulation. The results of this study
should contribute toward easy, highly accurate FOFC-based
length measurements.
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