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a  b  s  t  r  a  c  t

Scanning  deflectometry  method  has  been  successfully  employed  for the  measurements  of large  flat  sur-
faces  with  sub-nanometer  uncertainty.  In  this  paper,  we  propose  an  alternative  scanning  deflectometry
method  for  measuring  large  aspheric  optical  surfaces,  wherein  a rotation  stage  is  incorporated  to  increase
the measurement  range  of  the  high-accuracy  autocollimators  used  to  measure  small  angles.  Further,  the
pitching  error  of  the  linear  stage  is  compensated  with  offline  measurement  data.  In this  study,  we  con-
ducted  random  error  analysis  to estimate  the  measurement  repeatability.  Our  results  show  that  for  the
eywords:
rofile measurement
spheric optical surface
canning deflectometry
andom error analysis

measurements  of  large  aspheric  surfaces  with  large  slope  changes,  10-nm  repeatability  is achievable
under  the  suitable  conditions.  To  verify  the  random  error  analysis  results,  we also  constructed  an  exper-
imental setup  for test  the  measurement  repeatability.  The  repeatability  distribution  of  the  experimental
results  was  in  good  agreement  with  the  error  analysis  distribution.  We  have  thus  demonstrated  the  appli-
cability of  the  random  error  analysis  in  the  measurement  of  large  aspheric  surfaces  with  high  accuracies.
. Introduction

Large aspheric optical surfaces are extensively used in high-tech
ndustries such as facilities for constructing large telescopes and for
btaining synchrotron radiation. However, the accuracies of these
urfaces are typically less than hundreds of nanometers [1].  Hence,
rofile measurement of optical surfaces with high accuracies must
e conducted in order to ensure that their uncertainty is less than
ens of nanometers.

Interferometers employing holograms or null methods are also
sed for measuring aspheric optical surfaces that exhibit slight
epartures from a perfect sphere [2,3]. Stitching interferometers
ave also been developed to measure aspheric surfaces with depar-
ures less than 1000 waves from perfect spherical surfaces.

As an absolute measurement method to measure optical flat
urfaces, scanning deflectometry using an autocollimator has been
roposed previously [4,5]. The experimental results show that sub-
anometer uncertainty is acquired with both repeatability and
eproducibility [4].  However, because high-accuracy autocollima-

ors have limited measurement ranges, it cannot be used for the

easurement of surfaces with large slope changes. To increase the
easurement range of high-accuracy autocollimators, a scanning
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uzheng xiao@bit.edu.cn, xiao-mu-zheng@hotmail.com (M.  Xiao).
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deflectometry method with rotatable devices has been proposed
[6]. In this method, double reflection is applied to eliminate the
pitching errors of the linear stage; the experiment results demon-
strate that the measurement range was  increased. However, the
distribution of measurement repeatability did not coincide with
the error analysis results calculated using the traditional formula.

In this paper, we  have proposed an alternative scanning deflec-
tometry method for the measurement of large aspheric optical
surfaces, which incorporates a rotation stage. In this method, ran-
dom error analysis is performed with both the error propagation
method and Monte Carlo method. Further, we have constructed an
experiment setup for verifying the random error analysis and we
conducted repeated measurement experiments. The distribution of
the measurement repeatability has very good agreement with the
random error analysis results.

2. Principle

2.1. Principle of scanning deflectometry

The scanning deflectometry method is extremely popular for the
measurements of slightly sloped optical surfaces; here, the changes
in the slope of the optical surface (normal) are scanned by an angle

sensor. The surface profile is indirectly obtained by integrating the
angle data. To eliminate the effects of the pitching error of the linear
scanning stage, a pentaprism is fixed on the linear stage, as shown
in Fig. 1. The light beam from the autocollimator is then reflected

dx.doi.org/10.1016/j.precisioneng.2013.01.005
http://www.sciencedirect.com/science/journal/01416359
http://www.elsevier.com/locate/precision
mailto:xiaomuzheng@nanolab.t.u-tokyo.ac.jp
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center and sample surface.
Because the rotation causes very small displacement changes on

the surface, the curvature radius R can be estimated by the slope
Fig. 1. Principle of scanning deflectometry with autocollimator and pentaprism.

wice by the pentaprism, thereby eliminating the pitching error of
he linear stage.

.2. Scanning deflectometry method with rotation stage

Because of the limited measurement range of high-accuracy
utocollimators, the scanning deflectometry method cannot be
mployed for measuring surfaces with large slope changes.

Hence, in our study, we employed a rotation stage in order to
ncrease the measurement range of the autocollimator. As shown
n Fig. 2, we first fixed a rotation stage between the linear stage
nd autocollimator and then turned it at a certain angle when the
ngle detected by the autocollimator reached a limit; the autocol-
imator then displayed the angle. In this manner, the rotation stage
ncreases the measurement range.

Similar to the traditional scanning deflectometry method, pitch-
ng error of linear stage (Fig. 2) significantly affects the measured
ngle. As shown in Fig. 3, two compensation methods are proposed
o eliminate the effects of the pitching error offline and online com-
ensation methods.

In the case of the offline compensation method, the compen-
ation accuracy depends on the combined error from error of
utocollimator and the repeatability of the pitching angle of the
inear stage, whereas, for online compensation, the accuracy only
epends on the autocollimator. As a result, online compensation
as higher accuracy than offline compensation. Nevertheless, in
his paper, we have used the offline compensation method for the
itching error because it is easier to construct the experimental
etup. The pitching error of the linear stage is measured in advance
nd the data is used to compensate the angle change data of the

ample surface.

Fig. 2. Principle of scanning deflectometry method with rotation stage.
Fig. 3. (a) Online and (b) offline compensation methods, for pitching error.

2.3. Data processing

In the proposed method, the profiles of the optical surfaces are
not measured directly. We  must first calculate the raw angle data
in order to obtain the final profile data by data processing. There
are primarily two  steps – angle connection and profile integration.

2.3.1. Angle connection
Because of the rotation of the autocollimator, the obtained angle

data ai is interrupted. The connected angle data Aij is equal to the
sum of the raw angle data ai, rotated angle ˛j, and the pitching error
of the linear stage, Epi, as shown in Eq. (1).

Aij = ai +
j∑
1

˛j + Epi (1)

where i is the scanned time for the linear stage, and j is the rotation
time for the rotation stage.

For precise measurements, the rotated angle must be known
with high accuracy. Hence, instead of using the high-accuracy rota-
tion stage, we  have proposed a method to calculate the rotation
angle indirectly with high accuracy. As shown in Fig. 4, the following
relation exists between  ̨ and ˇ:

 ̨ = R

R − D
 ̌ (2)

Here R is the curvature radius of the surface in the rotated part
of the sample surface, and D is the distance between the rotation
Fig. 4. Relationship between rotated angle  ̨ for rotation stage and angle change ˇ
detected by autocollimator.
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Fig. 5. (a) Motion errors of linear stage. (b) Motion errors of rotation stage.
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 of the least square line for the angle data before rotation. The
istance D is adjusted and measured before the scanning.

As the autocollimator rotates, the measured position Xij on the
ample surface is changed by Sj accordingly as shown in Fig. 4. The
eographic relation Sj can be calculated as follows:

j = 2D sin
(˛j

2

)
cos(�j) (3)

here �j is the slope on the rotation part.
The measurement position Xij on the sample surface is able to be

etermined by two parameters: position change xi of linear samp-
ing and position change Sj by rotation. The position change xi and
he sampling interval h have a relation as shown in Eq. (4).  The
osition Xij can then be calculated as Eq. (5).

i = hcos(�i)
2 (4)

Xij =
∑

xi +
∑

Sj

= h
∑

cos (�i)
2 + 2D

∑
sin

(˛j

2

)
cos(�j)

(5)

.3.2. Profile integration
By using the connected angle data Aij and the corresponding

osition on the surface, Xij, the surface profile Fij can be calculated
sing the numerical integration method based on the trapezoidal
ule, as shown in Eq. (6).

F0 = 0

A0 = 0

F ′
ij

= tan(Aij)

Fij = Fij−1 + (Xij − Xij−1)

(
F ′

ij−1 + F ′
ij

2

) (6)

In the integration process, the profile data of the first measured
oint is set as the origin. Subsequently, the slope of the least square

ine is defined as the origin of slope. Hence, the profile is subtracted
y its least square line in order to obtain the slope origin.

. Random error analysis

Because of the introduction of the rotation stage, the proposed
ethod has a different structure from the traditional methods.
ence, it is necessary to perform error analyses to investigate the

ypes of conditions required for measurements with the expected
ncertainty. In this paper, only the random error is analyzed, and
he systematic error is not considered. Hence, the following anal-
sis results show the relationship between the error factors and
easurement repeatability but not the measurement uncertainty.
Many error factors exist in the measurement system, but only

 few affect the measurement results significantly. We  have com-

ared the effects of these error factors and determined the key error
actors. Subsequently, we have elucidated the manner in which the
rror is propagated from the key error factors to the random errors
f the final profile.

able 1
arameters used in error calculations and the angle error caused by motion error factors.

Parameters used in calculations R (mm)  

Value 2000 

Error  factors Ex (�m) Ey (�m) 

Value 10 10 

Angle  error (�rad) 5 1.3e−12 
3.1. Key random error factors

There are two types of random error factors: random autocol-
limator errors and random errors of the moving parts. Note that
the random error Eact of the autocollimator is considered as one of
the key random error factors since it directly affects the measured
angle.

As shown in Fig. 2, the system has two moving parts: a linear
stage and a rotation stage. The linear stage has six motion errors as
shown in Fig. 5(a): positioning error Ex, straightness error on the
Y direction, Ey, straightness error on the Z direction, Ez, pitching
error Epitch, yawing error Eyaw, and rolling error Eroll. Furthermore,
the rotation stage has two error factors: the rotation positioning
error E� and wobble angle error Ew, as shown in Fig. 5(b).

Two  motion error factors – the straightness error Ez of the linear
stage in the Z direction and yawing error Eyaw of the linear stage do
not affect the angle measurements at all. Moreover, since the pitch-
ing error of the linear stage is compensated by the offline measured
data, the effects of Epitch can be converted to the repeatability of the
pitching error Erep. Because the rotated angle of the rotation stage
is measured indirectly by the autocollimator (Section 2), the effects
of the positioning error E� are also converted to the autocollimator
error.

The relation between the motion errors and the angle errors
caused by them is easy to calculate from the geometric relation.
To compare the angle errors caused by different error factors, the
motion error factors are considered with a similar scale, as listed in
Table 1.

In this table, R is the curvature radius of the center of the
parabola surface being measured; D, the distance between the cen-
ter of rotation and sample surface; h, the sampling interval of the
linear stage; and ˇ, the change in the angle between the rotation
and post-rotation detected by the autocollimator.

From the comparison results, the angle errors caused by Ey, Eroll,
and Ew can be neglected when compared to the effects of Ex and
Erep. Hence, in addition to the autocollimator error Eact, there are
two key motion error factors: the positioning error Ex of the linear
stage and the repeatability Erep of the pitching error of the linear

stage.

D (mm)  h (mm)  ̌ (�rad)

50 1 500

Erep (�rad) Eroll (�rad) Ew (�rad)

1.5 20 20
1.5 3e−14 1e−27
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Fig. 6. Example with 6 raw angle data.

.2. Error propagation

By calculating the angle error caused by the error factors, the
ey error factors are found to be Eact, Ex, and Erep. Hence, the angle
rror should be combined to obtain the angle random error.

The random error of the autocollimator and the repeatability of
he pitching angle of the linear stage directly affect the measured
aw angle. The angle measurement error caused by the positioning
rror is equal to Ex divided by the curvature radius R of the sample
urface. As a result, the angle random errors caused by the three
ey error factors are combined to determine the random error Ea

f the raw angle data as follows:

a =
√

E2
act +

(
Ex

R

)2
+ E2

rep (7)

As introduced in Section 2, not all the calculation functions from
aw angle data to final profile data are linear calculations. Neverthe-
ess, for easier calculations, we have made several approximations
n the following error propagation process. The validity of these
pproximations was verified by comparing the error propagation
alculation results with the Monte Carlo simulation results.

Based on the linear uncertainty propagation principle, if the
elation between a vector Q with m components and vec-
or P with n components is as shown in Eq. (8),  the random
rror variance–covariance matrix VQ of Q and random error
ariance–covariance matrix IP of P has the relation given in Eq. (9)
7].

 = CP (8)

Q = CIPCT (9)

where C is the Jacobian matrix of Q.
We have given a simple example to understand the propaga-

ion process easily. Let us assume that the linear stage scans four
imes with a scanning interval h, and the rotation stage is rotated
nce after the second linear scanning. As a result, the autocolli-
ator obtains 6 angle data ai, as shown in Fig. 6. To simplify the

alculations, the pitching angle Epi has already been added to the
aw angle data ai.

The rotation stage turns an angle  ̨ after the autocollimator
btains the angle a3 and a4 is the angle measured after the rotation.
he difference between a3 and a4 is  ̌ in Eq. (2).

The first step of the data processing is to calculate the rotated

ngle  ̨ with the raw angle ai using Eq. (2).  The curvature radius

 is calculated using the slope k of the least square line of the raw
ering 37 (2013) 599– 605

angle data before rotation, i.e., a1, a2, and a3. Eq. (2) is transformed
into Eq. (10) in this example.

R = 1
k

;  ̌ = a3 − a4;

˛ = 1
1 − (a3 − a1/2h)D

(a3 − a4)
(10)

The vector Q1 (a1, a2 . . . a6, ˛) and raw angle vector RA (a1, a2
. . .,  a6) have the following relationship:

Q1 = C1RA (11)

where the Jacobian matrix C1 is calculated as Eq. (12).

C1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1
∂˛

∂a1
0

∂˛

∂a3

∂˛

∂a4
0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(12)

We assume that the raw angles have the same random errors
with the standard deviation of one, and moreover, that the raw
angle data is independent of each other; the variance–covariance
matrix I of the raw angle error is the identity matrix of size 6. Sub-
sequently, the variance–covariance matrix V1 of Q1 is calculated
using Eq. (13).

V1 = C1IC1
T (13)

The connected angle A is calculated with the raw angle and
rotation angle vector RA using

Aij = C2RA (14)

The Jacobian matrix C2 of the connected angle A is

C2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 1

0 0 0 0 1 0 1

0 0 0 0 0 1 1

⎞
⎟⎟⎟⎟⎟⎟⎠

(15)

Finally, the variance–covariance matrix V2 of A is calculated as
follows:

V2 = C2V1CT
2 (16)

The calculation from the connected angle A to the profile data F is
introduced in Eq. (5).  To simplify the calculations, in this error prop-
agation, we make the approximation that the angle tangent equals
the angle. The resulting profile vector F calculated from connected
angle vector A and position vector X is given by

F = C3A (17)

The Jacobian matrix C3 of the profile data F is

C3 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0

0 h 0 0 0 0

0 h h 0 0 0

0 h h s 0 0

0 h h s h 0

⎞
⎟⎟⎟⎟⎟⎟⎠

(18)
Here s is the change in the distance by the rotation calculated
using Eq. (3) and h is the scanning interval of the linear stage.
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Table 2
Parameters used in angle error propagation.

Parameters

L (mm) R (mm)  h (mm)  Amax (�rad) D (mm)

Value 300 2000 1 10,000 20

Parameters
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Fig. 8. Random error distribution of final profile gx .
Eact (�rad) Ex (�m) Erep (�rad)

Value 0.1 0.1 0.1

The variance–covariance matrix V3 of the profile data F is sub-
equently calculated as follows:

3 = C3V2CT
3 (19)

Since the data processing was introduced in Section 2, we  make
he least square line as the slope standard of the profile; hence, the
rofile vector F is subtracted and we obtain the final profile vector
. Finally, the propagation calculation from the raw angle data to

he final profile data is performed.

.3. Error propagation example

In order to clearly observe and understand the propagation
esult, we will now describe an analysis example for measuring the
arabola surface. The measurement conditions and the parameters
f the sample surface are listed in Table 2.

In Table 2, L is the length of the sample surface; h, the sampling
nterval of the linear stage; R, the center curvature radius of the
arabola surface; D, the distance between the rotation center of the
otation stage and sample surface; Eact, the autocollimator error;
x, the positioning error of the transmission stage; and Erep, the
epeatability of the pitching angle of the linear stage.

The random error distribution of the connected angle is shown
n Fig. 7.

In this simulation, the measurement range is 10,000 �rad and is
maller than the angle range of the sample surface, 148,900 �rad;
ence, the rotation stage rotated 14 times. From Fig. 7, when the
otation stage rotated, the connected angle error increased signifi-
antly; this implies that the connected angle has a larger error when
he rotation time is greater.

Fig. 8 shows the random error distribution of the final profile.
The random error is large at the beginning, end, and middle parts

f the surface. The smallest error occurs on the two points wherein
he profile intersected with the least square line. The mean of the

andom profile error is 12 nm.  This implies that under the given
onditions, it is feasible to achieve high measurement repeatability
f around ten nanometers by using the proposed method.

Fig. 7. Random error distribution of connected angle.
Fig. 9. Error distribution of connected angle, calculated from Monte Carlo simula-
tions.

3.4. Monte Carlo calculations

Since the linear propagation process has many approximations,
it is necessary to verify the extent of the difference from the cal-
culations with the nonlinear model without approximation. We
performed Monte Carlo simulations with 10,000 calculations in
order to verify the validity of the random error propagation calcu-
lations. The parameters in the Monte Carlo simulation are identical
to those given in Table 1. The connected angle error distribution is
compared with the error propagation results (Fig. 9), and the final
profile error distribution is compared with the error propagation
results (Fig. 10).

From Figs. 9 and 10,  the Monte Carlo simulation results are
similar to the random error distributions calculated using the error

propagation with approximation; the error propagation result
is larger but the difference is only around 6 percent, which is

Fig. 10. Error distribution of final profile, calculated from Monte Carlo simulations.
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ufficiently small. In this manner, the error propagation process
as been proved to have high validity.

The simulation results also show that under the given measure-
ent conditions, measurement repeatability of around 10 nm can

e achieved with the proposed method.

. Experiment

To verify the basic principles of the proposed method and the
alidity of the error analysis results, we constructed the experi-
ental setup shown in Fig. 11.
A  linear stage with a moving range of 200 mm and positional

epeatability of 2 �m was used for linear scanning. A rotation stage
as fixed on the linear stage, and an autocollimator was placed on

op of the stage. The measurement range of the autocollimator was
100 arc-second, i.e., around ±485 �rad.

The stability of the autocollimator was measured in advance,
s shown in Fig. 12.  The standard deviation of the autocollimator
tability was 0.06 arc-second, i.e., 0.3 �rad, and this was considered
o be the random error of the autocollimator.

The pitching error of the linear stage was also tested with
epeated measurements (10 times), and the results are shown in
ig. 13.

The repeatability of the pitching angle was 0.3 arc-second
1.2 �rad), as shown in Fig. 14,  and the repeatability of the linear
tage pitching angle was 0.3 arc-second (1.4 �rad).

A concave mirror (diameter: 50 mm)  was subsequently mea-
ured with one-line scanning. Since the measurement range of the

utocollimator was smaller than the slope changes of the sample,
he rotation stage was rotated 22 times. The raw angle data is shown
n Fig. 15.
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Fig. 12. Drift of autocollimator in 50 s.
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Fig. 15. Raw angle data for measuring a concave mirror with diameter of 50 mm.

By using the data processing method introduced in Section 2, the
profile of the sample surface was calculated as shown in Fig. 16.

By using the stability data of the autocollimator, the repeat-

ability of the pitching angle of the linear stage, and the positional
repeatability of the linear stage, as listed in Table 3, the random
error of the measurement can be predicted.

Distance on the sample surface, mm

P
ro

fi
le

 o
f 

sa
m

p
le

 s
u
rf

ac
e,

 n
m

0 10 20 30 40

0

10000

20000

30000

40000

Fig. 16. Profile of the sample surface.
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Table 3
Parameters used in the prediction of random error distribution.

Parameters

L (mm) R (mm)  h (mm)  Amax (�rad) D (mm)

Value 40 5000 0.1 400 100

Parameters

Eact (�rad) Ex (�m) Erep (�rad)

Value 0.3 1 1.2

F
t

i
s
i
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[

[

[

[

[

[
of  large aspheric optical surface by scanning deflectometry with rotatable
ig. 17. Comparison between the simulated random error distribution and devia-
ion from experiment results.

The simulation results were then compared with the exper-

ment results, as shown in Fig. 17.  The red line shows
tandard deviation of random error distribution when the method
ntroduced in Section 3 was used for the calculation, and the blue
ine shows standard deviation with 10 experiment results.

[

ering 37 (2013) 599– 605 605

As shown in Fig. 17,  the standard deviation of the experiment
results coincides with the simulated error distribution. This implies
that the random error analysis has high reliability.

5. Conclusion

In this paper, we have proposed a new scanning deflectometry
method that includes a rotation stage for the measurement of large
aspheric optical surfaces. To predict the measurement repeatabil-
ity of the proposed method, random error analysis was performed
using the error propagation method and Monte Carlo method.

An experiment setup was  constructed and a concave mirror
with large slope changes was  measured successfully. Repeated
measurement results showed that the repeatability had very good
agreement with the random error analysis results. The random
error analysis will be useful in facilities for measuring large aspheric
surfaces with high accuracies.
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