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Abstract 
The Edlén empirical equations and the two-color method are the commonly used approaches to 
converting a length measured in air to the corresponding length in vacuum to eliminate the influ-
ence of the refractive index of air. However, it is not well known whether the two-color method is 
superior to empirical equations in refractive index compensation. We investigated the uncertain-
ties of these approaches via numerical calculations of their sensitivity coefficients of environmen-
tal parameters. On the basis of a comparison of their uncertainties, we found that in a 0% humidi-
ty environment, the two-color method had potential to provide greater measurement accuracy 
than the empirical equations.  
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1. Introduction 
Meter, the unit of length, is defined in vacuum. However, measurements of length are often carried out in air, 
which presents some problems. Let us assume that we want to compare two geometric distances 1G  and 2G . 
These two distances are measured in air as 1 1 1L G n= ×  and 2 2 2L G n= × , where 1n  and 2n  are the refrac-
tive index of air (RIA). In the absence of a relationship between 1n  and 2n , it is not possible to determine 
which of 1G  and 2G  is greater only by judging the magnitude relationship between 1L  and 2L . To solve 
this problem, the influence of RIA must be eliminated. 

One approach to obtaining the value of RIA is to use empirical equations [1]-[4]. With n obtained, an estimate 
of the geometric distance /G L n=  can be calculated. The estimated geometric distance can be used for com-
parison. The empirical equations are used to compensate for the RIA under two assumptions. First, environmen-
tal parameters (namely, temperature, pressure, and humidity) can be measured. Second, a measured environ-
mental parameter is a good reproduction of that parameter along the optical path, meaning that a measured en-
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vironmental parameter is an average value over time and space. In other words, both the spatial distribution of 
environmental parameters and the time-delay of measurement equipment can be ignored. These assumptions are 
valid only if the measurement is performed in a closed environment (e.g., a well-controlled laboratory or under-
ground tunnel with limited variation in environmental parameters). 

Another approach to suppressing the influence of RIA is to apply the two-color method, which was first pro-
posed by Bender and Owens [5] to compensate for the inhomogeneous disturbances of the RIA in an open envi-
ronment. The core concept of the two-color method is to use a measured length difference between two colors 
(frequencies) to render length measurements less sensitive to changes in the RIA. 

Recently, high-precision length measurements based on fem to second optical frequency comb (FOFC) have 
been carried out (e.g., [6] [7]). To compensate for the RIA, FOFC-based RIA measurements [8] [9] and FOFC- 
based two-color method experiments [10]-[12] have also been performed. Minoshima’s group performed a two- 
color method experiment in a well-controlled environment and found an agreement between RIA compensation 
based on the empirical equations and that of two-color method with a standard deviation of 3.8 × 10−11 through-
out hours [13]. They also suggested that the accuracy provided by the empirical equations may be improved   
by the two-color method. 

One question arises naturally: theoretically, is the two-color method superior to the empirical equations in 
RIA compensation? We employed a numerical approach to investigate this possibility. 

2. Methods 
2.1. Refraction Index Compensation by Empirical Equations 
The distance between two points measured in air is an optical distance airL . An estimate of the geometric dis-
tance est_G λ  in vacuum and the optical distance has the following relationship. 

est_ air /G L nλ =                                      (1) 

where n represents the RIA. By applying the law of propagation of uncertainty [14] [15] to Equation (1), we ob-
tain the uncertainty of length in vacuum. 

2 2 2
est_ est_ air_1 air_1 est_( ) {[ ( ) / ] } {[ ( ) / ] }u G u n n G u L L Gλ λ λ= × + ×                   (2) 

where ( )u x  denotes the uncertainty of variable x. The first and second terms of the right-hand side of Equation 
(2) are the uncertainty due to the refractive index and the length measurement, respectively. These two are de-
fined as follows, respectively. 

est_ est_( ) [ ( ) / ]nu G u n n Gλ λ= ×                                (3) 

est_ air_1 air_1 est_( ) [ ( ) / ]Lu G u L L Gλ λ= ×                             (4) 

The uncertainty of refractive index can be evaluated by the following equation [16] [17]. 

0 0 0

2 2 2 2 2 2
T 0 P 0 H 0( ) ( ) ( ) ( )u n K u T K u P K u H= + +                         (5) 

where ( )u T , ( )u P , and ( )u H  are the uncertainties of the instrument for measuring temperature T, barome-
tric pressure P, and humidity H, respectively. TK , PK , and HK  are sensitivity coefficients and defined as 
follows. 

0 0 0 0 0 0T P H( / ) , ( / ) , ( / )T P HK dn dT  K dn dP  K dn dH= = =                     (6) 

where 
0

( / )Tdn dT  is the derivative of function y ( , , )n T P H=  at 0T T= . The definitions are similar for 

0
( / )Pdn dP  and 

0
( / )Hdn dH . 

2.2. Refraction Index Compensation by Two-Color Method 
The distances between two points measured in air by using different wavelengths are optical distances air_1L  and 

air_2L . An estimate of the geometric distance est_2G λ  from these two optical distances can be obtained as fol-
lows: 
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est_2 air_ 2 air_ 2 air_1( )G L A L Lλ = − × −                                 (7) 

where A is the so-called A-factor defined as 

vac_ 2 vac_ 2 vac_1[ ( , , , ) 1] / [ ( , , , ) ( , , , )]A n T P H n T P H n T P Hλ λ λ= − −                    (8) 

Equation (7) can be rewritten as follows. 

est_2 air_1 air_ 2(1 )G A L A Lλ = × + − ×                                 (9) 

By applying the law of propagation of uncertainty to Equation (9), we have 
2 2 2

est_2 air_1 air_ 2( ) ( ) [(1 ) ]u G u A L u A Lλ = × + − ×                            (10) 

The uncertainties of the first and second terms of the right-hand side of Equation (10) are, respectively, 
2 2 2

air_1 air_1 air_1 air_1[ ( ) / ] [ ( ) / ] [ ( ) / ]u A L A L u A A u L L× × = +                        (11) 

2 2 2
air_ 2 air_ 2 air_ 2 air_ 2{ [(1 ) ] / [(1 ) ]} [ (1 ) / (1 )] [ ( ) / ]u A L A L u A A u L L− × − × = − − +              (12) 

Because we have 2 2 2 2(1 ) (1) ( ) ( )u A u u A u A− = + = , Equation (12) can be rewritten as follows. 
2 2 2

air_ 2 air_ 2 air_ 2 air_ 2{ [(1 ) ] / [(1 ) ]} [ ( ) / (1 )] [ ( ) / ]u A L A L u A A u L L− × − × = − +               (13) 

By substituting Equations (11) and (13) into Equation (10), we obtain 
2 2 2 2 2

est_2 air_1 air_1 air_ 2 air_ 2( ) [ ( ) ] [ ( ) ] [ ( ) ] [ ( ) (1 )]u G u A L u L A u A L u L Aλ = × + × + × + × −            (14) 

The first and third terms of the right-hand side of Equation (14) are the uncertainty due to the A-factor, and 
the second and fourth terms are the uncertainty due to the length measurement. These two are defined as follows, 
respectively. 

2 2
est_2 air_1 air_ 2( ) [ ( ) ] [ ( ) ]Au G u A L u A Lλ = × + ×                      (15) 

2 2
est_2 air_1 air_ 2( ) [ ( ) ] [ ( ) (1 )]Lu G u L A u L Aλ = × + × −                    (16) 

The uncertainty of A-factor is as follows. 

0 0 0

2 2 2 2 2 2
A_T 0 A_P 0 A_H 0( ) ( ) ( ) ( )u A K u T K u P K u H= + +                     (17) 

where A_TK , A_PK , and A_HK  are the sensitivity coefficients of the A-factor and are defined as follows. 

0 0 0 0 0 0A_T A_P A_H( / ) , ( / ) , ( / )T P HK dA dT  K dA dP  K dA dH= = =                 (18) 

where 
0

( )TdA dT  is the derivative of function y ( , , )A T P H=  at 0T T= . The definitions are similar for 

0
( )PdA dP  and 

0
( )HdA dH .  

2.3. Comparison of Empirical Equations and Two-Color Method 
In Equation (4), the uncertainty due to the length measurement is multiplied by the factor est_ air_1/ 1G L nλ = ≈ . In 
Equation (16), the uncertainty due to the length measurement is multiplied by two factors, A  and 1 A− . 
Normally, their orders are several tens. If the two wavelengths used in the two-color method are 780 nm and 
1560 nm, then 141A ≈  and 1 140A− ≈ − . By comparing the magnitudes of Equation (4) and Equation (16), 
we understand that only when the condition 

2 2
est_2 est_[ ( )] [ ( )]A nu G u Gλ λ<                               (19) 

is satisfied, the two-color method can be shown to obtain measurements with a smaller error than that of the em-
pirical equations. We performed numerical calculations to check whether Equation (19) is feasible. 

3. Numerical Calculations 
We used the following parameters for simulation. By referring to Ref. [18], we employed 780.0 nm and 1560.0 
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nm as the two wavelengths. We used the equations for the phase refractive index given in Ref. [4]. Because of 
the limit on the length of this paper, we only considered the Edlén empirical equations in this study. In the Edlén 
empirical equations [2]-[4], the RIA can be derived from the wavelength in vacuum λ , temperature T, barome-
tric pressure P, and humidity H as n ( , , , )f T P Hλ= . The formula used to perform the calculations can be eas-
ily accessed via the internet [4]. In the following, we only consider the phase refractive index. The group refrac-
tive index can be treated in the same way. 

On the basis of Equations (6) and (18), we calculated the change in the sensitivity coefficients when environ-
mental parameters change in a realistic range (T ∊ [10, 30] ˚C, P ∊ [90,115] kPa, H = 0%). The calculations of 
the derivative of each refractive index have been validated in Ref. [19]. The same procedure was used in this 
study for calculating the derivative of the A-factor. After obtaining an expression for the sensitivity coefficients 
by substituting numerical values, the values of sensitivity coefficients were calculated. 

As shown in Figure 1, when = 0%, the sensitivity coefficient of the A-factor is smaller than that of the 
refractive indices. This result, i.e., the A-factor can be considered as a function of just two wavelengths only 
when the humidity is 0%, is consistent with the results of previous studies [10] [11] [13] [20]-[24]. 

On the basis of Equations (3) and (15), we calculated the uncertainties due to the A-factor and refractive in-
dices, respectively. The geometric distance G was set to 1 m. We assumed that ( ) 0.1 Cu T =   and ( ) 0.01 kPau P =  
on the basis of using a thermometer (Testo 735, Testo) and a barometer (VR-18, Sunoh), respectively. These 
two are commercially available for us.  

Figure 2 shows that est_2 est_( ) ( )A nu G u Gλ λ< . This result means that in a 0% humidity environment, the two- 
color method has potential to provide greater measurement accuracy than the empirical equations. Note that the 
orders of values shown in Figure 2 were affected by the sensitivity coefficients of environmental parameters 
and the uncertainties of the instrument for measuring environmental parameters. A detailed uncertainty analysis 
in an environment where the humidity is not 0% will be reported in another paper. 

4. Conclusion 
We analyzed the uncertainties of length conversion based on the Edlén empirical equations and the two-color  

 

 
(a) 

 
(b) 

Figure 1. Change in sensitivity coefficients of A-factor and refractive indices with (a) tempera-
ture when P = 101.325 kPa and H = 0% and (b) pressure when T = 20˚C and H = 0%.             
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(a) 

 
(b) 

Figure 2. Change in uncertainties due toA-factor and refractive indices with (a) temperature 
when P = 101.325 kPa and H = 0% and (b) pressure when T = 20˚C and H = 0%.                 

 
method, in which the uncertainties due to length measurement and refractive index compensation were decom-
posed. Using numerical calculations of sensitivity coefficients of the A-factor and refractive indices of the envi-
ronmental parameters, we found for the first time that in a realistic environmental parameter range (T ∊ [10, 30] 
˚C, P ∊ [90, 115] kPa, H = 0%), the uncertainty of the two-color method due to the A-factor was smaller than 
that of the empirical equations due to refractive indices. This result suggests that in a 0% humidity environment, 
the two-color method has potential to provide greater measurement accuracy than the empirical equations, with 
the cooperation of suppressing the uncertainties of length measurements (compared with uncertainties of refrac-
tive index compensation) to a negligible level. The findings of this study provide a better insight into the two- 
color method, and will create opportunities for further development of application of this method. 
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