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Abstract: A noble simulation method for evaluating task specific uncertainty in coordinate metrology is proposed. Provided 
that specification or test result conforming to ISO 10360-2 is available, both variance of point coordinates and covariance 
expressing the mutual influence is handled to perform Monte Carlo simulation reflecting spatial constraint in error of 
CMM. Development and implementation of the over all procedures are pursued to apply them on real CMM. Comparison 
result between uncertainties obtained by the proposed method and that by experimental measurements shows good 
agreement. However the worst shows 1 μm over-estimated, and the functionality and the characteristic of ease to use are 
validated. 
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1. INTRODUCTION 
 

Decision process for showing conformance or non-
conformance to the specification is one of the major 
concerns in industry today related to geometrical quality 
control. Since uncertainty can be interpreted as an 
indication of sharpness of the decision process, the 
effective evaluation method of uncertainty has been 
increasingly interested (Kunzmann et al., 2005). The 
Monte Carlo simulation integrated with coordinate 
measuring machine (CMM) is recognized as a typical 
possibility on this subject especially for complex 
measurement task commonly specified on practical part 
drawings (Wilhelm et al., 2001).  

Task specific uncertainty evaluation by Monte Carlo 
simulation was firstly realized as Virtual CMM by PTB 
(Trapet et al., 1999). The approach quantifies all the 
effective uncertainty contributors one by one as input 
parameters. Random generators are applied on the 
respective contributors to reproduce the population 
distribution through number of repeated trials. A simplified 
simulation method requiring limited number of input 
parameters, typically a specification value or a result of 
ASME B89 performance test is proposed (Phillips et al., 
1997). The approach reproduces enough number of 
different CMM geometry on computer by Monte Carlo 
simulation. Another Monte Carlo simulation method which 
tries to quantify correlation effect on the basis of 
simultaneous estimation of the geometric errors and so on 
is presented as well (Balsamo et al., 1999). The above task 
specific uncertainty evaluation attracts users of CMM. 
However, the evaluation does not always spread in 
industry related to geometrical quality control. Limited 
number of application example has been practically 
utilized mostly at calibration laboratories or practical users 

of CMM. The current study is motivated by noticing ease 
to use for them to be one of the important issue. It is 
authors’ intention to propose and implement a smart 
methodology based on modelling of spatial constraint 
naturally existing in errors of CMM. 
 
2. CONSTRAINED MONTE CARLO SIMULATION 
 

Typical flow of Monte Carlo Simulation built for task 
specific uncertainty evaluation of coordinate measure-ment 
is shown in Fig.1.  
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Fig. 1. Scheme of CMM uncertainty evaluation by Monte 

Carlo simulation 
 
Functionality of a physical CMM is replaced by a software 
module modeling CMM error behaviour for the uncertainty 
evaluation purpose. The whole process starts from a part 
program for the CMM. It is translated from a measurement 
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task specified typically on a drawing for the part to be 
inspected. The part program is then interpreted to a string 
of point coordinates to be measured. Actually sampled 
point coordinates are collected from the CMM. 
Geometrical elements are calculated as the drawing 
indicates. Processes down to evaluation of the elements are 
so repeated at this point with each time varied scenario of 
input influencing contributions as to accumulate enough 
number of the element evaluation results.  

The whole process ends up by quantifying uncertainty 
in interest. The whole process can be operated like genuine 
CMM software. This is preferable for transparency and 
accountability of the uncertainty statement in industry. 
 
2. 1. Proposed Modular Structure 
 

A proposed modular structure for Constrained Monte 
Carlo Simulation (CMS) is shown in Fig. 2. Functionality 
of the CMS module starts from accepting a point 
coordinate interpreted by the CMM software. Variance-
covariance information typically translated from ISO 
10360-2 specification or the test result, described in later in 
the current study is utilized as input influencing 
contribution. The module ends up the function by returning 
a perturbed point coordinate which reflects possible 
geometrical deviation according to characteristics of the 
input influencing contributions, back to the CMM 
software.  
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Fig. 2. Scheme of constrained Monte Carlo simulation 

 
A single run pre-process is executed prior to repeated 

simulation for uncertainty evaluation. Having variance-
covariance information, and also a string of point 
coordinates composing whole measurement strategy, task 
specific variance-covariance matrix with n by n dimension 

is assigned. Where, n corresponds to total number of point 
coordinates within the measurement strategy. The 
variance-covariance matrix is then decomposed into a 
series of orthogonal basis functions and the corresponding 
re-combination factors. The basis functions and the factors 
are transiently recorded for subsequent process. 

The core operation of CMS consists of generation of n-
times of random numbers each having variance equal to the 
re-combination factors. The re-composition process 
proceeds by taking a linear combination of the random 
numbers with the basis functions. Consequently a string of 
perturbed point coordinates within the measurement 
strategy is obtained at a single stroke. Repeating the core 
operation m-times to be able to obtain sufficient population 
of perturbed point coordinates, following element 
calculation and the statistical calculation is operated as 
conventional Monte Carlo simulation. As far as input 
influencing contribution is given by variance-covariance 
information, other contributions can easily be integrated 
into the simulation module.  
 
3. MODELING OF SPATIAL CONSTRAINT 
 

Technologically available measuring instruments today 
commonly adopt systematic error compensation to enhance 
the native performance. Major systematic error 
components are subject of compensation as far as they 
behave in reproducible manner within focused time and 
space. Experience on calibration service suggests that 
residual of systematic error compensation tends to derive 
rather moderately fluctuating wave form. This is because 
finite sampling in time and space as well as filtering 
operation for smoothing or noise suppression inevitably 
derives residual of calibration which characterizes 
behaviour of unknown but systematic. 
  
3. 1.Unknown systematic contribution 

 
The unknown systematic contribution may become a 

major player on uncertainty evaluation, although quite 
limited possibilities have been presented. Several studies 
introduce a basis function to be superimposed as unknown 
systematic contribution. Typically sinusoidal wave form is 
adopted by assigning suitable wavelength, amplitude and 
phase to the focusing phenomena. However, the sinusoidal 
wave is the best coherent basis. The coherence may 
unexpectedly interfere with measurement strategy. It 
intrinsically contains limitation of its usage for uncertainty 
evaluation by Monte Carlo simulation. 

Another possibility is to adopt covariance or 
equivalent auto correlation (Takamasu et al., 2003; van 
Dorp and Haitjema, 2001) as resource for the basis 
function. Especially by combining the possibility with 
orthogonal decomposition, it is able to derive a series of 
mutually uncorrelated basis functions (Abbe & Takamasu, 
2002). The nature enables a simple Monte Carlo simulation 
on the orthogonal basis with a simple random generator to 
reproduce trial series reflecting the correlation naturally 
observed in unknown systematic contribution. 
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3. 2. Ease to prepare input influencing contribution 
 
Considering a typical procedure for uncertainty 

evaluation, all the influencing contributions are listed up 
and then quantified one by one. Easiness of the procedure 
for the operator strongly depends on number and 
complexity of preparation of input influencing 
contributions. It is desirable to establish a simplified 
procedure which is able to cope with both effectiveness of 
uncertainty evaluation and easiness of the preparation. A 
potential solution could be to focus on industry available 
performance test framework.  

Utilization of specification or the test result of ISO      
10360-2 test as principal information to prepare input 
influencing contribution for uncertainty evaluation (Abbe 
et al., 2000) is considered. The ISO standard is 
internationally accepted as an acceptance and reverification 
test procedure for CMM. The procedure consists of two 
major tests. One is E-test measuring one dimensional size 
with five different spacing over the whole measurement 
volume along seven different directions. Commercially 
available CMM conforming to this standard claims the 
specification in the form of the maximum permissible error 
(MPE). The test is so performed as to be able to show 
conformance to the specification by taking the test 
uncertainty in account. An example of a typical expression 
of the specification of the E-test can be e.g. MPEE = a + b x 
l. Applied the MPEE on shorter size of l, it shows rather 
smaller deviation like a , while larger the size the 
expression allows deviation to enlarge correspondingly. 
This tendency falls basically in line with our daily 
experience, although deviation observed on a real CMM 
reveals random like fluctuation in combination with 
moderately varying wave form. The latter is mostly caused 
by auto reflection of the unknown systematic contribution. 
It is natural to grasp that the expression of the maximum 
permissible error varying positively with the size increment 
includes information of intrinsic spatial constraint of error 
of CMM. 

A way of modeling is illustrated in Fig. 3 by 
recognizing specification or the test result of ISO 10360-2 
to be an indirect expression of uncertainty in size 
measurement. This model with maximum permissible 
sense is inspired by a fact that the specification and 
interpretation of the test result shall be applied to any 
location and orientation in the CMM measurement volume.  
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Fig. 3. Modelling of spatial constraint by covariance 

 

4. IMPLEMENTATION 
 

A concept of Constrained Monte Carlo Simulation 
(CMS) for evaluating task specific uncertainty in 
coordinate metrology was presented. A modelling 
procedure applicable to CMS was then proposed. This 
chapter advances practical implementation scheme to 
realize uncertainty evaluation functional module by 
combining them. 
 
4. 1. Derivation of task specific covariance matrix 

 
A derivation procedure of task specific covariance 

matrix from specification or test result of ISO 10360-2 is 
described. Considering a result of size measurement l=x2-x1 
composed of two point coordinates x1 and x2, variance of 
the size measurement Var( l ) results in equation 1 by 
introducing variance of respective point coordinates and 
the covariance Cov(x1,x2) as the mutual effect. Variance of 
the point coordinate is assumed to be homogeneous in the 
measurement volume as the worst scenario. The mutual 
effect is explained as dependant of the distance. 

( ) ( ) ( ) ( )
( ) ( )[ ]lx

xxxxl
CovVar2

,Cov2VarVarVar 2121
−=

−+=
 (1) 

Let us simplify discussion here by interpreting MPEE be 
comparable to 95% probability limit of normal distribution. 

( ) ( )[ ] 22Var 2
maxlbax ×+=  (2) 

( ) ( ) ( )[ ] 2VarVarCov max lll −=  (3) 

where, lmax expressing physically accessible longest length 
in the measurement volume is introduced. Assuming 
homogeneous variance in the volume and the mutual effect 
attenuated depending on the distance, variance-covariance 
of respective point coordinates composing a complex 
measurement strategy can be quantified in a straight 
forward manner. 
 
4. 2. Decomposition into basis functions of error 

 
Having variance-covariance information, a unique 

Monte Carlo simulation fully reflecting the given statistical 
characteristics is performed. Suppose we have a 
measurement strategy composed of discrete point 
coordinates, e.g. n-points, defined by CMM software, a 
task specific variance-covariance matrix C with nxn 
dimension is assigned, and transferred to single run pre-
process to decompose it orthogonally into the eigen vectors 
V and the corresponding eigen values D. 

1−= VDVC  (4) 

Where, 

( ) ( ) ( )[ ]n21 vvvV =  (5) 

123



 
 

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

n

2

1

0

0

λ

λ
λ

D  (6) 

The important point to note is that the eigen vector means 
orthogonal basis function and the eigen value does re-
combination factor for our considering these information to 
be used for CMS. An example of the basis function in case 
of one dimensional size measurement with 100 mm equi-
distanced measurement strategy is shown in Fig. 4. A 
series of lower order exponential curve-like wave forms 
are observed. 
 
4. 3. Trial Series Reflecting Variance-Covariance 

 
Once task specific basis functions and the 

corresponding re-combination factors are obtained, a string 
of trial values ( x̂ ) for CMS can be generated easily. 

( ) nn2211ˆ vvv εεε +++=x  (7) 

Where, ε i is a random number satisfying: 

( ) 0E i =ε , and  ( ) iiVar λε =  (8) 
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Fig. 4. Example of orthogonally decomposed basis  
   functions in case of size measurement. 

 
The simple equation 7 explains the fact that repeated run 
evaluation for the task specific uncertainty evaluation can 
be performed by applying only a simple random generator. 
That is to say, it takes linear combination with the basis 
function and the randomized re-combination factor. This 
re-composition operation derives a string of perturbed 
point coordinates included in the task specific variance-
covariance matrix at a single stroke. The run evaluation is 
repeated m-times for m-times Monte Carlo simulation 
consisting of each n-point coordinates. 
 
5. VERIFICATION ON REAL CMM 
 

Constrained Monte Carlo Simulation module is 
integrated into CMM software adopted on a moving bridge 

CMM commercially available in industry as a test case. 
CMS module described in the former section for overall 
CMM geometry and that for probing characteristics are 
implemented. The CMM has specification of as follows is 
in unit of mm. 

]μm[P

]μm[E

9.1

1000/39.1

=

×+=

MPE

lMPE
 (9) 

The CMM has been located at a site for more than 
three years. Record of the environmental log shows the 
temperature deviation within 5.120 ± deg. C. Temperature 
gradient in time and in space, which give major impact on 
the CMM performance, is within the CMM specification, 
however not superior. Geometrical characteristic of the 
CMM has been periodically inspected. It is believed that 
the long term and short term error behavior is empirically 
known as the CMM just to satisfy the specification. A 
calibrated cylinder artifact is chosen as an artifact to verify 
functionality of proposed CMS. A cylinder has a variety of 
features which can be well calibrated by conventional 
techniques (Trapet et al., 1999). The cylinder artifact 
having nominal dimension of 90 mm in diameter and 250 
mm in size in the axial direction has been calibrated. The 
calibration uncertainty was reported as less than 0.7 μm for 
measurands. The calibration uncertainty is small 
comparing to practical performance of the CMM. 
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           Fig. 5. Comparison between real measurement  and 

CMS result 
 

Comparison are made between results obtained 
through a series of physical measurement performed on the 
real CMM and that done on the CMS as schematically 
shown in Fig. 5. The physical measurement is repeated on 
the CMM for 256 times by varying location and orientation 
of the cylinder artifact, as well as the probing configuration 
of the CMM. The measurement result may provide an 
experimentally obtained task specific uncertainty 
statements by multiple measurements. 

Simulation measurement by CMS is repeated 256 
times as well. Both uncertainty evaluation processes and 
primary output population distribution of calculation 
results for respective features are of interest. Fig. 6 shows 
population distribution for some of evaluated features as 
examples, e.g. length, diameter, and squareness.  
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Fig. 6. Comparison of population distribution obtained by 

CMS and real measurement 
 
6. CONCLUSION 
 

A simulation method for evaluating task specific 
uncertainty applicable to industrially available CMM is 
proposed. The method performs Monte Carlo Simulation in 
orthogonally decomposed multi dimensional error space to 
be able to reproduce statistical behavior of unknown 
systematic error of CMM, provided the variance-
covariance information is known prior to the simulation. 
Implementation of CMS for another category of input 
influencing contributions can be handled in very similar 
manner by having a procedure to quantify the variance-
covariance information. 

A potential limitation of the method may be dimension 
of the task specific variance-covariance matrix especially 
on application requiring a large number of discrete points. 
A possible solution is to section the task specific variance-
covariance matrix into parts where the mutual influence is 
to be negligible. 

We see wider possibility of the method to expand the 
application field in coordinate metrology by accumulating 
sufficient experience on quantification procedure for 
various input influencing contributions. 
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Fig. 7. Comparison of uncertainty evaluation result 
 
The left three figures show population distribution 

from CMS result, and the right three figures show that 

from real measurement on the CMM. All the plots draw 
dimensional variation of features in the abscissa and the 
population in the ordinate. It is confirmed that the CMS is 
able to derive feasible population distribution generally 
conforming to that obtained by real measurement. 
Including the above three features, all the evaluation results 
of population distribution resulted by the CMS show 
agreement with that obtained on real measurement. 

The comparison result of expanded uncertainties 
between CMS and the real measurement is summarized in 
Fig. 7. Both results conform to each other in case of 
uncertainty evaluation of a cylinder artifact although the 
worst shows 1 μm over estimated. 
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