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The ability to measure the diameter of a small hole with low measuring force and high 
resolution is one of the key issues in product evaluation in the semiconductor and micro 
machining industry. Currently there is no popular sensing system for this type of measurement, so 
we have developed a novel pneumatic sensing system to solve this problem. The sensor consists 
of a small ball, a thin pipe, a vacuum generator and a differential pressure gauge. In this sensor, 
the small ball is kept at the center of the thin pipe by the vacuum pressure. When the ball touches 
a wall of a small hole, the ball is shifted from the center of the pipe, which causes air to flow 
from the outside to the inside of the pipe. The differential pressure gauge detects the airflow, and 
the sensor registers the contact between the small ball and the wall of the small hole. A first 
prototype of the pneumatic ball probe has been made and tested. Based on the theoretical 
analysis and the results of experimental tests, it appears that the probe can detect the contact of 
the ball. 
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1. Introduction 
 

The importance of the measurement of small 
geometrical quantities continues to grow in the 
semiconductor and micro machining industry. This is a 
need for a probing system that can measure the size of 
a small machine part such as a small hole (that is, a 
hole with a diameter smaller than 3.2 mm in drilling) 
with low measuring force 1). 

Small holes are used in machine parts, print boards 
and as many kind of nozzles. In order to machine a 
small hole precisely, it is important to measure the 
hole’s inner diameter. A lot of research is underway to 
develop ways to make these measurements, including 
development of a limiting gauge method, a taper stylus 
method and a mechanical stylus method 2). Masuzawa 
has proposed a vibrating stylus method 3). 

The problems with these methods are the amount 
of contact made by the probe, since a small measuring 
force is essential. Optical and pneumatic methods 4) 5) 

have a small measuring force, but the optical method 
is influenced by the texture of the material’s surface 
and the size of optical instruments is often a limitation. 

Pneumatic micrometers, on the other hand, are 
widely used to measure the size of machine parts with 
low measuring force 6)-8). We proposed a novel 
pneumatic measuring system known as the “Pneumatic 
ball probe” which consists of a small ball and a thin 
pipe. The basic concepts and specifications of the 
pneumatic ball probe are discussed herein; the 
prototype of the probe has been made and tested 9). 

 
2. Basic Construction and Target Specifications 

 
The pneumatic ball probe consists of a small ball 

as a stylus tip and a thin pipe as a stylus shaft (see Fig. 
1). The small ball is kept at the center of the pipe by 
vacuum pressure. The small ball is shifted when it 
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Fig. 1 Basic construction of the pneumatic ball probe
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touches the wall of a small hole with a very small 
measuring force. The shift of the ball causes airflow 
from outside to the inside of the probe, which change 
the pressure inside the probe. This pressure change is 
then measured with a pressure sensor. 

Our target specifications for the pneumatic ball 
probe were as follows: 
(1) The diameter of the small ball is from 0.1 mm to 

1.0 mm. 
(2) The measuring force is smaller than 0.001 N. 
(3) The measuring resolution is up to 1 µm. 
(4) Deviations from sphericity of the small ball or 

roughness at the top of the pipe is better than 1 
µm.  

 
3. Basic Analysis of the Pneumatic Ball Probe 

 
3.1 Analysis of Measuring Force 

The quantity of the pneumatic ball probe’s 
measuring force is obtained from the analysis of 
moments at point E (see Fig. 2). Equation (1) shows 
the balance of moments at point E, when the ball 
touches the wall. Solving equation (1) for the 
measuring force F, equation (2) is obtained, as 
follows: 

0
422

22

=−−− dDFdMgdFP , (1) 

22

)(

dD
dMgFF P

−

−= , (2) 

where Fp is the force of the vacuum pressure need to 
support the ball upward, M is the mass of the small 
ball, g is the gravity constant, D is the diameter of the 
small ball and d is an internal diameter of the thin pipe. 
In these equations, friction between the ball and the 
pipe and between the ball and the wall are disregarded. 
The vacuum force Fp and the mass of ball M are 
expressed as follows: 
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where PV is the vacuum pressure and ρS is the density 
of the ball. If we substitute equations (3) and (4) into 
equation (2), we obtain the quantity of measuring force 
F as the following equation: 
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Fig. 3 indicates the relationship between the 
measuring force F and the ratio D/d, when the vacuum 
pressure is 10 kPa and the density of the ball (made of 
steel) is 7900 kg/m3. 

From these equations and the figure, we can 

determine that the measuring force of the probe is 
smaller than 0.001 N, when the ratio D/d is over 1.1 
and the internal diameter of the pipe d is smaller than 
0.2 mm. Our target specifications are also satisfied 
when the ratio D/d is 2.0 and the internal diameter is 
0.4 mm. Moreover, under these conditions, a bending 
of the pipe by the measuring force is smaller than 1 
µm. 

From equation (5) we see that if the force of 
vacuum pressure degrees is at the upper limit needed 
to support the mass of the ball, the measuring force 
becomes smaller. However, the smaller vacuum force 
causes the support to be unstable. We plan to do 
further tests to determine the optimum condition of the 
vacuum pressure for this application. 

 
3.2 Pressure Changes in the Probe 

To measure pressure changes in the probe, we first 
determined the location and size of an opening in the 
pipe that would allow air to flow into the pipe. The 
opening area s where airflow occurs from outside to 
the inside of the pipe is indicated in Fig. 4. The area s 
is calculated from equation (6) to relate the 
displacement of the ball e as follows: 
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Fig. 2 Measuring force F of the pneumatic ball probe 

from the moment balance at point E 
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Second, we consider velocities and pressures of the 
airflow at the top, inside and at end of the probe. Fig. 5 
shows the model of pressure changes and airflow in 
the probe, where, PO is the atmospheric pressure 
outside of the probe and PA is the sensing pressure in 
the probe, Pv is the vacuum pressure, and the airflow 
velocities from outside to inside and inside probe as 
well as within the probe are vA and vB, respectively.  

From Bernoulli’s theorem, momentum theorem 
and the equation of continuity, we obtain equation (7) 
at the top of the probe, equation (8) at the end of the 
probe and equation (9) as follows 10) 11): 
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where ρa is the density of air, h is a coefficient of 
energy loss in proportion to the squares of the velocity 
at the top of the probe and a is the area of the sensing 
position of the probe. From equations (7), (8) and (9), 
we obtain the inside pressure of the probe PA . 
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In this connection, we detect the difference 
pressure ∆P between the pressure at the sensing 
position PA minus the vacuum pressure PV. The 
differential pressure ∆P is calculated from equation 
(10) as follows: 
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Fig. 6 shows the theoretical relationship between 
the differential pressure ∆P and the shift of ball e from 
equations (6) and (11). To continue the analysis, we 
assigned internal diameters of the pipe to be d = 0.4 
mm or d = 1.0 mm (the other conditions: da = 3 mm, 
PO−PV = 9.2 kPa, h = 5.0). We decided to match the 
experimental data with the theoretical data when 
assessing the value of energy loss. This figure 
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Fig. 4  Opening area s between the pipe and the ball 
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Fig. 5  Model of the airflow in the probe 
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implicitly demands that the smaller internal diameter d 
causes smaller pressure changes and a smaller 
measuring range of the ball shift. The maximum 
pressure is observed when the ball shift e is d/2. 

Fig. 7 displays the change in differential pressure 
when the diameter of the sensing area da = 0.8 mm, 1 
mm and 3 mm and the other conditions are the same as 
those in Fig. 6. The results are that small pressure 
changes are obtained when the sensing area is wide. 

 
4. Basic Experiments of Pneumatic Ball Probe 

 
4.1 Construction of Basic Experiments 

Fig. 8 shows an experimental setup of the 
pneumatic ball probe. A compressor and a vacuum 
generator provide vacuum pressure to the probe, and a 
differential pressure sensor (Toyoda, AA6000H200D, 
measuring range 0 to 200 mmH2O) detects the 
differential pressure from the probe and then outputs 
digital signals to a personal computer system. A stage 
(resolution is 1 µm) and a stage controller that is 
controlled by the computer system shifts the ball of the 
probe. 

The first prototype of the probe is illustrated on Fig. 
9. The internal diameter d of the pipe is 0.4 mm or 1 
mm, the diameter of the ball D is 1 mm or 2 mm, the 
diameter of the probe at the sensing position da is 0.8 
mm, 1 mm or 3 mm, the diameter of the pipe is 0.8 
mm or 1.5 mm, and the length of the pipe is 15 mm or 
20mm. We supplied vacuum pressures (−9.2kPa from 
the atmospheric pressure) and shifted the stage step by 
step.  

 
4.2 Relationship between Ball Shift and 

Differential Pressure 
Fig. 10 indicates that the ball (diameter 2 mm) is 

kept at the top of pipe (inner diameter 0.4 mm) by the 
vacuum pressure. When the ball shift is large, the ball 
is still stable, as shown in Fig. 10 (b). 

Fig. 11 shows one example of the relationship 
between the differential pressure ∆P and the stage 
displacement f in the same conditions as those in Fig. 6. 
We found that the theoretical graph (Fig. 6) had almost 
the same figures and tendencies as the experimental 
graph (Fig. 11). In these graphs, the horizontal scales 
are not in agreement, because stage displacement is 
used instead of a ball shift in Fig. 11. Furthermore, the 
coefficient of energy loss h is assumed as 5.0 so that 
the experimental data and the theoretical data agree.  

The origin of the vertical scale of the graph in Fig. 
11 is the average pressure when the ball shift is zero. If 
the area of ball shift is large (that is, if f is larger than 
0.6 mm), the differential pressure varies unstably. On 
the other hand, if the area of ball shift is small (if f is 
0.3 mm to 0.4 mm), the fluctuation of the differential 
pressure of the inner diameter of 0.4 mm is larger than 

that of the inner diameter of 1 mm. This is because the 
vacuum generator and the differential pressure sensor 
are not stable if the pressure load is high. 

 
4.3 Relationship between Differential Pressure 

and Ball Shift 
In order to miniaturize the probe, the diameter of 

the ball has to be small. When the diameter of the ball 
becomes small, the inner diameter of the pipe also can 
be small and the change of differential pressure can be 
small. The result is that the diameter of the sensing 
area becomes small in order to magnify the change of 
the differential pressure. 
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Fig. 8  Experimental setup of the pneumatic ball probe
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Fig. 9 Cross sectional drawing of the first prototype

of the pneumatic ball probe 
 

 
(a)  e ≅  0.3 mm          (b)  e ≅  0.8 mm 

 
Fig. 10 Photograph of the ball at the top of pipe for 
diameter of ball D is 2 mm and internal diameter of 
pipe d is 0.4 mm at ball shift e is 0.3 mm and 0.8 mm 
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Fig. 12 displays the relationship between the 
differential pressure ∆P and the stage displacement f 
under the same conditions as Fig. 7. From Figs. 7 and 
12 we can conclude that the qualitative relationship 
between the theoretical analysis and the experimental 
results is good. In Fig. 12, the differential pressure is 
averaged over the span of 1 sec (sampling interval is 
0.2 sec) to reduce the influence of the instability of the 
vacuum generator and the pressure sensor. 

When the diameter of the sensing area is small, the 
amount of airflow becomes small and the energy loss 
increases. In this condition, the pressure load is high, 
the vacuum generator becomes unstable and there is a 
limited pressure gain. 

 
4.4 Evaluation of Resolution of the Probe 

The contact signal is detected when the differential 
pressure is greater than the threshold pressure, which 
is the average pressure when the ball shift is zero. Fig. 
13 shows the pressure fluctuation in 30 sec when the 
ball shift is zero. The thin line indicates the pressure 
during a 0.1-sec sampling interval, and the thick line 
indicates the average pressure in 1 sec. The standard 
deviation (±2σ) of the pressure fluctuation of raw 
pressure and the averaged pressure are ±4.9 Pa and 
±1.4 Pa, respectively. 

Fig. 13 (b) shows the slope of the beginning point 
of the pressure change in Fig. 12. The resolution of the 
probe can be calculated from the pressure fluctuation 
and the slope of the pressure change as Fig. 13 (b). 
Table 1 lists the resolution of the probe, which relates 
to the averaging and the internal diameter of the 
sensing area. 

At the present time, the resolution obtained does 
not reach the level of the target resolution. We will 
continue to try to increase the resolution of the probe.  
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5. Conclusions 
 
In this article, we described a novel pneumatic ball 

probe that can measure small machine parts with a 
small measuring force. The basic analysis and the 
basic experiments show that the theoretical analysis 
agrees with the experimental results. We reached the 
following conclusions:  

(1) the basic construction of the pneumatic ball 
probe was possible, 

(2) the measuring force of the pneumatic ball 
probe can be set at less than 0.001 N when the 
radius of the pipe is smaller than 0.2 mm, 

(3) the theoretical equations for the relationship 
between the differential pressure and the shift 
of ball were obtained, and 

(4) the first prototype of the pneumatic ball probe 
has been made and tested. 

It is difficult to detect a small pressure change, 
because the energy loss increases when the size of the 
probe is small. Therefore, the resolution of the 
prototype probe does not achieve the target resolution. 

We will use this type probe as a touch-sensitive 
probe. In this condition, we can only detect contact 
rather than pressure change. Developing a pneumatic 
ball probe sensing method that detects contact is a goal 
for the future. 
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Table 1 Resolution of the pneumatic ball probe relation 
to the averaging and the internal diameter of 
the sensing area 

 

Internal diameter 
of sensing area da 

0.8 mm 1 mm 3 mm 

Without averaging 3.8 µm 5.6 µm 12.6 µm

With averaging 1.1 µm 1.6 µm 3.6 µm 

 

 


