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A physiologically motivated, dynamical model of cardiovascular autonomic regulation is shown to be
capable of generating long-range correlated and multifractal heart rate. Virtual disease simulations are carried
out systematically to account for the disease-induced relative dysfunction of the parasympathetic and the
sympathetic branches of the autonomic control. Statistical agreement of the simulation results with those of
real life data is reached, suggesting the possible use of the model as a state-of-the-art basis for further
understanding of the physiological correlates of complex heart rate dynamics.

DOI: 10.1103/PhysRevE.72.041904 PACS number�s�: 87.19.Hh, 87.80.Vt, 89.75.Da, 05.45.Df

I. INTRODUCTION

The complexity of biological dynamics with long-range
�multi-�scaling properties continues to attract the interest of
the scientific community, while the origins and the nature of
this type of biocomplexity have yet eluded satisfactory ex-
planation. This is partly because proposed models �1,2� for
biocomplexity cover exclusively spatially interacting phe-
nomena, leaving the dynamical complexity �3� to a large
degree unexplored. A model involving an explicit temporal
axis is needed better to understand how the complex biologi-
cal dynamics arises.

Healthy human heart rate is a typical example of signals
showing long-range temporal correlations �4,5� and multi-
fractal scaling properties �6,7�. Physiologically, the origin of
the complex dynamics of heart rate has been attributed to
antagonistic activity of the two branches of the autonomic
nervous system: the parasympathetic �PNS� and the sympa-
thetic �SNS� nervous systems, respectively, decreasing and
increasing heart rate �4,5,7,8�. There also exist physiological
models for the dynamics of the neural regulation of heart rate
�9,10�, equipped with antagonistic and multiplicative delayed
feedback loops. The purpose of the present study is to exam-
ine whether a state-of-the-art, nonlinear, and physiologically
sound model is capable of displaying complex dynamics
with long-range �multi-�scaling properties.

The breakdown of the complex heart rate dynamics has
also been reported in illness associated with altered cardio-
vascular autonomic regulation. There is evidence that de-
creased long-range correlated fluctuations �11,12�, especially
in the low frequency region �11,13�, are associated with in-
creased mortality in cardiac patients and the multifractality
of heart rate dynamics is lost in patients with congestive
heart failure �6�. Further, a recent study by Struzik et al. �14�
systematically showed that the disease-induced relative dys-
function of either the PNS or the SNS results in more corre-
lated heart rate dynamics, but only the PNS dysfunction
leads to reduced multifractality.

In the present study, we also examine whether the model
proposed allows one to simulate disease-specific alterations

in heart rate complexity by changing the model parameters
responsible for controlling the autonomic activity. Long-
range �multi-�scaling properties of ambulatory heart rate
have recently been shown to be highly independent of be-
havioral effects �e.g., transient exercise, diet, postural
changes, etc.� �7,15� and to provide robust indicators of au-
tonomic abnormality due to the disease per se �14�. Virtual
disease simulations will therefore likely be important in ad-
vancing an understanding of the physiological correlates of
complex heart rate dynamics and in diagnosing the condi-
tions of a range of patients having abnormality in their auto-
nomic regulation.

II. DESCRIPTION OF MODEL

The model �Fig. 1� is a system of delay-differential equa-
tions based on the one proposed by Seidel and Herzel �9� and
later modified by Kotani et al. �10� to incorporate additional
factors needed to simulate synchronization between heart-
beat and respiration �16�. In this study, we further refine the
model to account for the effects of sympathetic efferent ac-
tivity on cardiac filling, which is important for the mainte-
nance of normal blood pressure. We also choose to omit the
nonlinear phase effectiveness curve in the original model �9�
because the results are not altered without this additional
nonlinearity. In summary, the model consists of physiologi-
cal factors including: �i� Neural afferents from blood pres-
sure sensors, i.e., baroreceptors, to the central nervous sys-
tem; �ii� autonomic �sympathetic and parasympathetic�
neural efferents from the brain stem cardiovascular centers;
�iii� mechanical signal transduction within the cardiovascular
system finally setting the arterial blood pressures; and �iv�
the effect of the baroreceptor afferents on the instantaneous
phase of the respiratory oscillator.

The baroreceptor activity �b is set by blood pressure p
�mm Hg; 0.133 kPa� and its first derivative as
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�b = k1�p − p�0�� + k2
dp

dt
+ �1 �1�

�default parameters: k1=0.02 mm Hg−1, k2=1.25
�10−3 s mm Hg−1, and p�0�=50.0 mm Hg�. The �1 is a me-
chanical noise added to the blood pressure signal on a beat-
to-beat basis. We use a Brownian motion updated at each
heartbeat and held within interbeat periods. The standard de-
viation of �1 is set to 0.16.

This �b subsequently determines the efferent sympathetic
neural activity ��s�, after being modulated by respiratory in-
fluence R, as

�s� = �s
�0� − ks

b�b + ks
r�1 − R� �2�

��s
�0�=0.95, ks

b=0.8, and ks
r=3�10−4� and

�s = �s��tanh��s� � 100� + 1.0�/2.0. �3�

The hyperbolic tangent function is used to prevent negative
neural activity, i.e., negative firing frequency. Likewise, the
parasympathetic neural activity ��p� is determined as

�p� = kp��p
�0� + kp

b�b + kp
r �1 − R� + �2� �4�

�kp=1.1, �p
�0�=0.0, kp

b =0.036, and kp
r =4.5�10−3� and

�p = �p��tanh��p� � 100� + 1.0�/2.0. �5�

The �2 is the �central� neuronal noise affecting the parasym-
pathetic activity on a beat-to-beat basis. We use a fractional
Brownian motion with a global Hurst exponent of zero �i.e.,
1 / f noise� of which the standard deviation is set to 0.012.
The 1/ f noise in heart rate dynamics is indeed thought to be

of central origin, because it is reported �17,18� to be lost
during deep sleep, when central nervous system activity is
considered to be minimal.

The heartbeat is generated by an integrate-and-fire model:
When the pacemaker phase ��� of the sinus node hits the
threshold of 1.0, the pacemaker fires and � is immediately
reset to zero. The phase velocity is a function of both sym-
pathetic �fs� and parasympathetic �fp� influences on the sinus
node

d�

dt
=

1

T�0� fsfp �6�

�T�0�=0.6 s�, and the sympathetic �facilitatory� influence fs is
a function of the cardiac concentration �ccNe� of the sympa-
thetic neurotransmitter “norepinephrine” �Ne�

fs = 1 + k�
cNe�ccNe + �ĉcNe − ccNe�

�ccNe�ncNe

�ĉcNe�ncNe + �ccNe�ncNe
�

�7�

�k�
cNe=1.6, ĉcNe=2.0, and ncNe=2.0�. As the release of Ne by

the neural input �s is known to have slow kinetics, the ccNe
kinetics is described, after incorporating the neural conduc-
tion delay ��cNe=1.65 s�, by the first-order model

dccNe

dt
= −

ccNe

�cNe
+ kccNe

s �s�t − �cNe� �8�

��cNe=2.0 s and kccNe

s =0.7�.
The parasympathetic �inhibitory� influence fp assumes no

transmitter kinetics, because the kinetics of the neurotrans-
mitter “acetylcholine” is sufficiently fast, and the fp is a di-
rect function of the neural input �p. Thus, we have

fp = 1 − k�
p��p�t − �p� + „�̂p − �p�t − �p�…

�
�p�t − �p�np

��̂p�np + �p�t − �p�np
� �9�

��p=0.5 s, k�
p =5.8, �̂p=2.5, and np=2.0�.

The systolic part of the blood pressure for each heartbeat
is determined by the diastolic pressure of the previous
beat di−1 �mm Hg� and the cardiac contractility of the current
beat Si

p = di−1 + Si
t − ti

�sys
exp�1 −

t − ti

�sys
� , �10�

where ti is the time of last contraction onset and
�sys=0.125 s. The hypertensive factor Si is a function of the
duration of the previous heartbeat period Ti �s� through the
Frank-Starling mechanism �i.e., greater cardiac filling results
in greater contractility�, of the cardiac concentration of Ne
�Eq. �8�� through an increase in cardiac contractility, and of
the vascular concentration of Ne �c�Ne� through the increased
venous return to the heart. This is described by

FIG. 1. �Color online� Schematic diagram of the cardiovascular/
respiratory model in this study. The diversity in the model is caused
mainly by factors such as time delays in the neural conduction,
multiplications in neural and mechanical variables, and time-
varying Windkessel dynamics.
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Si� = S�0� + kSccNe

c + kS
t Ti−1 + kSc�Ne

� �11�

�S�0�=−13.8 mm Hg, kS
c =10 mm Hg, kS

t =45 mm Hg s−1, and
kS

v=20 mm Hg� and

Si = Si� + �Ŝ − Si��
Si�

nS

Si�
nS + ŜnS

�12�

�Ŝ=70 mm Hg and nS=2.5�.
The diastolic part of the blood pressure is described by the

relaxation of the Windkessel arteries with a time-varying re-
laxation “constant” �� �s�

dp

dt
= −

p

���t�
, �13�

and the �� is a function of the vascular concentration of Ne
�c�Ne� as

�v = ��
�0� − �̄��c�Ne + �ĉ�Ne − c�Ne�

�c�Ne�n�Ne

�ĉ�Ne�n�Ne + �c�Ne�n�Ne
�
�14�

���
�0�=2.8 s, �̄�=1.2 s, ĉ�Ne=1.0, and n�Ne=1.5�. As in Eq. �8�,

the c�Ne has first-order kinetics with the conduction delay
��Ne �s�

dc�Ne

dt
= −

c�Ne

��Ne
+ kc�Ne

s ��s�t − ��Ne� + k�� �15�

���Ne=2.0 s, kc�Ne

s =0.5, and k�=0.2�, where k� is a constant
ensuring the tonic firing of the sympathetic nerve to the vas-
cular smooth muscles. According to Seidel and Herzel �9�, an
increase in the vascular sympathetic delay ��Ne to 4.2 s leads
via a Hopf bifurcation to low-frequency �	0.1 Hz�, sus-
tained heart rate and blood pressure oscillations. Thus, we
adopt this value as ��Ne in the present study.

To incorporate cardio-respiratory interaction, we first
introduce an instantaneous phase of respiration r where
0.0�r	0.5 and 0.5�r	1.0, respectively, correspond to
expiratory and inspiratory periods. With this r, the respira-
tory influences R in Eqs. �2� and �4� are described by

R = cos�2
r� . �16�

Without the influence of baroreceptor afferents, the r has a
constant phase velocity of:

dr

dt
=

1

Tresp
, �17�

where Tresp is a constant respiratory period.
Next we add the effect of the baroreceptor afferents

on the respiratory phase: if �b��trig during expiration
�sin�2
r��0.0�, the r is modulated as

FIG. 2. �Color� Heartbeat intervals from representative simulations �a�, �c�, and �e� and the actual data �b�, �d�, and �f� with a color bar
of the local Hurst exponent. The strongest singularity is red �h=0.0�, and the weakest singularity is blue �h=0.6�. The data of each panel is
as follows: �a� Virtual heartbeats mimicking healthy subjects; �b� actual heartbeats of healthy subjects; �c� virtual heartbeats mimicking
subjects who suffer from CHF; �d� actual heartbeats of subjects who suffer from CHF; �e� virtual heartbeats mimicking subjects who suffer
from PAF; and �f� actual heartbeats of subjects who suffer from PAF.
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dr�

dt
=

1

Tresp
− G � ��b − �trig� , �18�

and:

dr

dt
=

dr�

dt
�tanh�dr�

dt
� 100� + 1.0�/2.0, �19�

where Tresp=3.5 s is a constant respiratory period and
G=0.2 and �trig=1.3 are constant values. The lower bound of
respiratory phase velocity dr /dt is set to 0.0 to prevent “re-
verse” breathing. Note that higher �b results in slower phase
velocity during expiration, and thus lengthens the period of
expiration as observed in experimental studies �19,20�.

III. SIMULATION AND DATA ANALYSIS

A set of delay-differential equations is numerically inte-
grated by the fourth-order Runge-Kutta method with a con-
stant step size �5 ms�. To handle the time delays, we use ring
buffers which store the immediate history. In all simulations,
we skip the first 180 s to exclude transients, and analyze the
following 50 000 heartbeat intervals, applying the proce-
dures described below.

Heartbeat interval data are resampled at a frequency of 1
Hz and the power spectrum is calculated by fast Fourier
transform �FFT�, after applying the Bingham’s cosine ta-
pered window.

To evaluate the long-range temporal correlations of
beat-to-beat heartbeat intervals �4,5�, the global Hurst expo-
nent is calculated by second-order detrended fluctuation
analysis �DFA� �21�. The integrated time series y�k� is
divided into boxes whose size is n. In each box, the variance
F2�n� after the second-order detrending is calculated as
F2�n�=1/n
k=1

n �y�k�−yn�k��2, where yn�k� is the second-
order least-squares fit of y�k� within the box. The fluctuation

function F�n� is the average root-mean-square of all
the boxes. Scaling exponent � is obtained by the relation
F�n��n�, and the global Hurst exponent by H=�−1.0. The
range of 1.7� log n�3.0 is used to calculate the �.

The multifractal scaling properties of heart rate �6,7� are
evaluated by using multifractal formalization, applying
wavelet theory �22� to calculate the scaling exponents ��q�
by a power-law dependence Zq�a��a��q�, where the partition
function Zq�a� is the sum of the qth powers of the local
maxima of the absolute moduli of the wavelet transform co-
efficients at scale a. In this study, the third derivative of the
Gaussian function is used as the analyzing wavelet. We use
1.3� log a�2.7 to calculate ��q�. This ��q� is then related to
D�h� through a Legendre transform �23�, D�h�=qh−��q�,
where h=d��q� /dq: D�ho� is the fractal dimension of the
subset of the original time series characterized by the local
�Hurst� scaling exponent ho �23�. We use an average curva-
ture of ��q� �i.e., 2��q� /q2� for −3�q�3 as a multifractal
index; more negative values imply greater multifractality.

IV. VIRTUAL PHYSIOLOGY EXPERIMENTS

By setting �kp ,kccNe

s ,kc�Ne

s �= �1.1,0.7,0.5�, where kp , kccNe

s

and kc�Ne

s , respectively, stand for the central PNS gain, and
SNS gains for the cardiac and vascular branches, the model
produces a heartbeat interval sequence �Fig. 2�a�� that is
similar to actual data for a young healthy individual �Fig.
2�d��, taken from a previous study �15�. With these param-
eters, the power spectrum shows a distinct high-frequency
peak indicative of the presence of respiratory modulation of
the heart rate at around 0.3 Hz, a small low-frequency peak
at around 0.1 Hz, due to the emergence of a limit cycle
caused by the vascular sympathetic delay ���Ne�, and a
1/ f-type characteristic in the lower frequency region �Fig.

FIG. 3. �Color� Averaged re-
sults of 50 simulations mimicking
the healthy, CHF, and PAF states.
�a� Power spectra; �b� DFA plot;
�c� multifractal spectra ���q��; and
�d� singularity spectra �D�h��.
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3�a��, all reported in actual heartbeat intervals in healthy in-
dividuals �5�.

The DFA plot �Fig. 3�b�� also shows that there are long-
range temporal correlations with the average global Hurst
exponent approximating 0.1, again consistent with the value
reported for healthy subjects �14�. In addition, we observe a
nonlinear, curved multifractal spectrum ��q� �Fig. 3�c�� and a
wide singularity spectrum D�h� �Fig. 3�d��, implying multi-
fractal heartbeat interval fluctuations mimicking those in
healthy humans �6,7�. When we examine the local contribu-
tion to multifractality by using the method of local effective
Hurst exponent �24�, it is observed that nonuniform distribu-
tions of the local Hurst exponent are indeed similar for the
simulation �Fig. 2�a�, color coding� and the data �Fig. 2�d��.

Although there have been various cardiovascular models
hitherto proposed to account for some of the statistical prop-
erties observed in actual human heart rate, such as high- and
low-frequency periodicities �9,25� and global long-range cor-
relations �3�, ours is the first one that can generate all of the
known statistical properties of heartbeat interval fluctuations,
up to higher moment statistics probed by multifractal spectra.
In other words, our physiological model is able to account, in
a statistical sense, for most of the variability components
observed in tens of thousands of heartbeats. Note, in addi-
tion, this model is capable of exhibiting yet another nonlin-
ear phenomenon, namely, the cardiorespiratory synchroniza-
tion �16�, as reported in Ref. �10�.

Nunes Amaral et al. �7� recently studied multifractal prop-
erties of the heartbeat under pharmacological suppression of
either the PNS or the SNS in humans. They found that, by
the administration of atropine, a blocker for the acetylcholine

receptor at the heart, influencing the PNS function, the mul-
tifractality of the heartbeat was greatly reduced �converted to
monofractal signals� and the global Hurst exponent was sig-
nificantly increased. By contrast, the administration of meto-
prolol, a blocker for the �-adrenergic receptor at the heart,
but not for the �-adrenergic receptor at the vascular smooth
muscles, only influencing the cardiac SNS function, resulted
in almost unchanged, albeit slightly decreased, multifractal-
ity, with the global Hurst exponent unaltered.

Our model is capable of reproducing these experimental
results. For instance, when we move the parameter
settings for the healthy, unblocked state to �kp ,kccNe

s ,kc�Ne

s �
= �0.22,0.7,0.5�, i.e., only decreasing the central PNS
gain kp, this virtual administration of atropine results in an
increased global Hurst exponent �Figs. 4�a� and 4�e��, and
greatly reduced multifractality �Figs. 5�a� and 5�e��. By
contrast, the virtual administration of metoprolol, by
only reducing the cardiac SNS gain kcNe

s to �kp ,kccNe

s ,kc�Ne

s �
= �1.1,0.14,0.5�, does not change either the global Hurst
exponent �Fig. 4�e�� or the multifractality index �Fig. 5�e��
dramatically.

It is of note that the surfaces for both the average global
Hurst exponent �Fig. 4� and the multifractality index �Fig. 5�,
drawn after large-scale �20 times� simulations with various
combinations of �kp ,kccNe

s ,kc�Ne

s �, are far from monotonic, in-
dicating that the effects of the central PNS, cardiac SNS, and
vascular SNS gains are not additive, and interact with each
other in a complex manner. For example, with the presence
of sufficient central PNS gains, increasing cardiac SNS gain
generally results in an increased Hurst exponent �Figs.
4�d�–4�f��, but such a response is not observed with the re-

FIG. 4. �Color� Average global Hurst exponent as functions of cardiac �kccNe

s � and vascular �kc�Ne

s � sympathetic activity at different levels
of vagal or parasympathetic �kp� activity.
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duced central PNS gain �Fig. 4�a��. Also, the effects of SNS
gains on the multifractal indices are exaggerated only with
moderate �or natural� levels of central PNS gain �Figs. 5�e�
and 5�f��. These interactions seem to be important in under-
standing changes in heart rate complexity in pathological
conditions, as described in the next section.

V. VIRTUAL DISEASES

Congestive heart failure �CHF� and primary autono-
mic failure �PAF� are diseases for which the long-range
�multi-�scaling properties of large-scale heart rate have been
rigorously examined to date �6,14�. CHF is a severe heart
disease associated with decreased PNS �26,27� and increased
SNS �26,28� activity. It has been reported that the heart rate
dynamics of CHF patients is characterized by increased
long-range correlations �an increase in the global Hurst ex-
ponent� and decreased multifractality �6�. PAF, by contrast, is
a neurological disease where neuronal degeneration of the
autonomic nervous system, especially in SNS, is the main
pathology �29�. Thus, in the case of PAF, both PNS and SNS
activity are suppressed and the rate of suppression is greater
in the SNS than in the PNS. It has been reported that the
heart rate dynamics of PAF patients is characterized by in-
creased long-range correlations but preserved multifractality
�14�.

In the simulations, we heuristically choose the parameter
sets of �kp ,kccNe

s ,kc�Ne

s � for CHF and PAF as �0.22, 0.84, 0.6�
and �0.44, 0.28, 0.1�, respectively. Compared with the setting
�kp ,kccNe

s ,kc�Ne

s �= �1.1,0.7,0.5� for the healthy case, there is a

considerable decrease in the PNS gain �kp� and an increase in
the cardiac �kccNe

s through the �-adrenergic mechanisms�, and
in the vascular �kc�Ne

s through the �-adrenergic mechanisms�
SNS gains for CHF �Figs. 4 and 5�. For PAF, while the
decrease in kp is moderate, both the cardiac and the vascular
SNS gains are greatly reduced �Figs. 4 and 5�.

The virtual CHF results in a considerable decrease in both
the mean heart interbeat interval and in heart rate variability
�Fig. 2�b��, comparable with an actual record for a CHF pa-
tient �Fig. 2�e��. Both the power spectrum �Fig. 3�a�� and the
DFA plot �Fig. 3�b�� show steeper slopes in the low fre-
quency or the long-range region, indicative of stronger long-
range correlations than in the virtual healthy case; the in-
crease of long-range correlations in CHF is well evidenced
�4,6�. The ��q� spectrum has a linear dependence on q �Fig.
3�c�� that results in a narrow singularity �D�h�� spectrum
�Fig. 3�d��, implying the reduced multifractality reported in
actual CHF �6�. This is also reflected in the monochromatic
color bars for the local Hurst exponents �Fig. 2�b�� similar to
those observed for actual CHF patients �Fig. 2�e�� �14�.

The virtual PAF also results in considerable decreases in
both the mean interbeat interval and heart rate variability
�Fig. 2�c��, compared with healthy cases, but not to the level
for CHF. As reported previously �14�, the global Hurst expo-
nent estimated by the DFA slope is higher than that for the
virtual healthy case �Fig. 3�b��. However, the ��q� spectrum
shows a comparable nonlinear dependence on q in the
healthy case �Fig. 3�c��, which results in a wider D�h� spec-
trum �Fig. 3�d��, implying the preserved multifractality re-
ported in actual PAF �14�. The color bars for the local Hurst

FIG. 5. �Color� Multifractality by the averaged curvature of ��q� as functions of cardiac �kccNe

s � and vascular �kc�Ne

s � sympathetic activity
at different levels of vagal or parasympathetic �kp� activity. The negative values imply greater multifractality.
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exponents �Fig. 2�c�� are indeed heterogeneous, like those
observed for actual PAF patients �Fig. 2�f�� �14�.

The surfaces for both the average global Hurst exponent
�Fig. 4� and the multifractality index �Fig. 5� drawn after
large-scale simulations with various combinations of
�kp ,kccNe

s ,kc�Ne

s � generally show that the global Hurst expo-
nent increases with the reduced central PNS gain, increased
cardiac SNS gain, and reduced vascular SNS gain. Also, the
multifractality index increases when the central PNS gain is
higher and the vascular SNS gain is lower, but remains un-
related with the cardiac SNS gain. Changes in heart rate
complexity in illness associated with altered cardiovascular
autonomic regulation like CHF and PAF might be caused by
a combination of these factors.

VI. DISCUSSION

We have presented a physiological dynamical model of
cardiovascular autonomic regulation which is shown to be
capable of generating a long-range correlated and multifrac-
tal heart rate signal. A stochastic feedback model was previ-
ously proposed �3� to account only for the long-range corre-
lations of heart rate. Our model shares some similarity with
this stochastic feedback model, in that a system with feed-
back, autonomic regulation is driven by stochastic noise.
However, our model is equipped with fundamental physi-
ological mechanisms leading to altered long-range correla-
tions and multifractality of heart rate in health, in pharmaco-
logical interventions, and in disease.

Indeed, our model captures the general statistical and
transient characteristics of, respectively, the global and local
Hurst exponents, which reflect the long-range correlations
present in the system, subject to autonomic �im�balance. Fur-
ther, we compare the multifractality index of the healthy

simulation data with that of surrogate data having the same
Fourier amplitudes and distributions as the original data �30�.
We confirm that the multifractality in our model is significant
at the level of P�0.001 by a paired t test. Also, it is of note
that the model produces nontrivial Hurst exponents between
0.0 and 0.5, i.e., between those of monofractal noise sources
used to drive the system, that change consistently with ex-
perimental and disease-induced alternations in the autonomic
nervous system.

Our measurements were conducted using the same meth-
odology for both the simulated model time series and the
human heart rate data sets. Therefore, while the precise
meaning of the term “multifractal heart rate” is still open to
investigation, we conclude that we have succeeded in quali-
tatively reproducing the observed heterogeneity of the local
Hurst exponents and their relative contributions to the mul-
tifractal spectra in both the data and model simulations.

Arguably, the model includes many built-in nonlinearities,
which can potentially lead to nonlinear complexity of the
simulated heart rate. The use of the nonlinear functions is
based on the phenomenological physiological knowledge.
For instance, sigmoidal non-linearities �Eqs. �3�, �5�, �8�,
�10�, �12�, �15�, and �19�� are considered to be observed in
the actual cardiovascular system with the role of avoiding
nonphysiological �i.e., too large and/or too small� values. It
has to be noted, however, that in our simulation, essentially
only the linear part of most of these functions is used and the
nonlinear effect of these functions seems very small. Figure
6 shows two examples of the relation between a sigmoidal
function and output data. In both variables of Si and �p, the
nonlinear effect of the sigmoidal function indeed seems to be
small. An exception is the sympathetic nervous activity �s
�Eq. �3��, which crosses the sigmoidal threshold consistently.
This effect, also reported in the original simulation of Seidel
and Herzel �9�, is considered physiological because the sym-

FIG. 6. �a� Time series of Si;
�b� its sigmoidal function as Eq.
�12�. Time series of Si is lower
than 60 mm Hg most of the time,
and in this region the sigmoidal
function is linear. Therefore, the
nonlinear effect of this function is
very small; �c� �p when a heart-
beat occurs; �d� its sigmoidal
function as Eq. �5�. At around
20 000 beats, the �p is bounded by
the sigmoidal function, but this
state is temporal; �e� time series of
�s during 40 s; �f� its sigmoidal
function as Eq. �3�. Normally,
sympathetic nervous activity �s

crosses the sigmoidal threshold al-
most consistently, which is the
same as the simulation by Seidel
and Herzel �9�. Simulated data of
�a�, �c�, and �e� are performed
within the parameters of the
healthy condition.
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pathetic activity is generally burstlike. Also, such consistent
crossing does not result in a temporally long-range correlated
and multifractal heart rate signal. Therefore, the multifracta-
lity of human heartbeat in our model is mainly generated by
resting components such as antagonistic dual controls by the
SNS and PNS, delayed and time-variant feedback, multipli-
cation in the sinus node, and mixing and circulation of noise.
We believe these findings should prove to be helpful in clari-
fying the mechanism�s� of multifractality in actual human
heartbeat.

VII. CONCLUSION

In conclusion, our model captures the general statistical
and transient characteristics which have been observed in

actual human pathological and pharmacological nerve block-
ades. These results indicate not only the validity of our
model, but also the possibility of applying this model to
clinical medicine.
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