
 
 
 
 
 
 

Estimation of uncertainty of measurements of 3D mechanisms 
after kinematic calibration 

K Takamasu1, O Sato2, K Shimojima3, S Takahashi1 and R Furutani4

1 Department of Precision Engineering, The University of Tokyo, Hongo 7-3-1, 
Bunkyou-ku, Tokyo 113-8656, JAPAN 
2 Department of Mechanical Engineering, Sophia University, Kioi-cho 7-1, Chiyoda-
ku, Tokyo 102-8554, JAPAN 
3 National Metrology Institute of Japan, National Institute of Advanced Industrial 
Science and Technology, Umezono 1-1-1, Tsukuba, Ibaraki 305-8563, JAPAN 
4 Department of Precision Engineering, Tokyo Denki University, Kandanishi-cho 2-2, 
Chiyoda-ku, Tokyo 101-8457, JAPAN 

E-mail: takamasu@pe.u-tokyo.ac.jp 

Abstract. Calibration methods for 3D mechanisms are necessary to use the mechanisms as 
coordinate measuring machines. The calibration method of coordinate measuring machine 
using artifacts, the artifact calibration method, is proposed in taking account of traceability of 
the mechanism. There are kinematic parameters and form-deviation parameters in geometric 
parameters for describing the forward kinematic of the mechanism. In this article, the 
estimation methods of uncertainties using the calibrated coordinate measuring machine after 
the calibration are formulated. Firstly, the calculation method which takes out the values of 
kinematic parameters using least squares method is formulated. Secondly, the estimation value 
of uncertainty of the measuring machine is calculated using the error propagation method. 

1.  Introduction 
Calibration methods of coordinate measuring machines are essential to measure accurately and to 
evaluate uncertainty of measurements [1][2]. In the feature based metrology, we formulated the 
method to evaluate the uncertainty in coordinate metrology [3][4]. Furthermore, we proposed the error 
propagation method to estimate the uncertainty of kinematic parameters in the calibration of the 
coordinate measuring machines [5][6]. 

These evaluations of uncertainty of the parameters are calculated in the machine coordinate system. 
However, the specified measurement tasks are done in a workpiece coordinate system after the 
calibration. In this article, the estimation methods of uncertainties using the calibrated coordinate 
measuring machine after the calibration are formulated. Firstly, a variance and covariance matrix on 
measuring points is calculated from a variance and covariance matrix of the kinematic parameters of 
the calibrated measuring machine. Secondly, uncertainties of a size measurement or a point 
measurement in a workpiece coordinate system are estimated using the error propagation method. 
Therefore, the estimation methods of uncertainties on the specified measuring tasks are formulated in 
the feature based metrology. 
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2.  Uncertainty evaluation of a measuring point 

2.1.  Uncertainties of kinematic parameters 
The uncertainty of kinematic parameters can be calculated from the uncertainty factors in the 
kinematic calibration of the coordinate measuring system using error propagation. The forward 
kinematics of the coordinate measuring system f is defined by kinematic parameters p and readings of 
each encoder q as in equation (1).  

  (1) 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
==

MM
2

1

2

1

   ,   ,),( q
q

p
p

z
y
x

qpqpfx

The uncertainty of kinematic parameters Sp is calculated from the Jacobian matrix A and the error 
matrix S in the calibration procedure as in equation (2). Where Sr is an uncertainty of coordinate 
conversion parameters of artifacts and Spr is a covariance between the kinamatic parameters and the 
coordinate conversion parameters. 
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2.2.  Uncertainty of a measuring point after the calibration 
The uncertainties matrix of a measuring point T1 consists of variances of each coordinate sx2, sy2 and 
sz2, and covariances between XYZ coordinates sxy, sxz and syz of a measuring point. Equation (3) 
defines T1 as sum of three factors of uncertainties such as uncertainties from kinematic parameters Tp, 
the uncertainty from encoders Tq and from probing Tm. Each uncertainty can be calculated from 
equations (1) and (2) using error propagation method. Where sq is the uncertainty of encoders, sm is the 
uncertainty of probing and E is a unit matrix. 
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2.3.  Uncertainty of a specified measuring task 
The uncertainty in equation (3) is evaluated on the measuring machine coordinate system. However, 
measurements are normally done on a workpiece coordinate system. Equation (4) defines a measuring 
task of size measurement in XY coordinate plane as an example of simple measuring task. The size d 
is calculated by two measuring points x1 and x2 in XY coordinate plane. From this equation, a 
Jacobian matrix Ad is defined using partial differential of coordinates of two points as in equation (5). 
Then, an uncertainty of size measurement sd is calculated as in equation (6). Where, T1-2 is a variance 
and covariance matrix of the two measuring points x1 and x2. 
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3.  An example of calculation 
We demonstrate an example of calculation using a two dimensional coordinate measuring system by 
two line cameras. Figure 1 shows the coordinate system of the two dimensional camera system; the 
tow cameras are positioned at (0, 0) and (b, 0) on XY coordinate plane. Parameters u1 and u2 are offset 



 
 
 
 
 
 

angles of each camera from Y axis and a parameter b is X coordinate of camera 2 of approximately 
200 mm. 

A forward kinematics of the system can be expressed as in equation (7). Where p is a parameter 
vector of three kinematic parameters and q is an angle vector from images of each camera. 
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Figure 1. A two dimensional coordinate measuring 
system by two line cameras has three kinematic 
parameters such as offset angles of line cameras u1 and 
u2, and a length of baseline b. 

3.1.  Results of calibration 
Table 1 shows the results of calibration of the two dimensional line camera system under the 
conditions; no. of points: 25 in X of 50-150 mm and Y of 50-150 mm at 25 mm intervals, the camera 1 
is located at (0, 0) and the camera 2 is located at (200, 0). As errors in the calibration, a random 
uncertainty of probing is 10 µm, a measuring uncertainty of an external measuring system for the 
calibration is 5 µm and an angular uncertainty of each camera is 0.001 deg are obtained. 

Table 1. Calibration results of the two dimensional line camera; no. of 
points: 25 in X of 50-150 mm and Y of 50-150 mm at 25 mm intervals. 
The standard deviations of the three kinematic parameters and the 
correlation coefficients between the parameters are calculated. 
 

 correlation coefficients for 
 standard deviations u2 b 

u1 0.0042 deg 0.0057 -0.4764 
u2 0.0042 deg - 0.4763 
b 15.7 µm - - 

3.2.  Uncertainties after the calibration 
From the results of calibration, we calculate the positioning uncertainty using equation (2). Figure 2 
illustrates a contour map of root sum square value from uncertainties of X and Y coordinates of the 
two dimensional camera system. In this figure, it is assumed that an uncertainty of probing is 10 µm 
and an uncertainty of each camera is 0.001 deg. Figure 3 shows the size measurement uncertainties 
from a specified point (100, 100) using equation (6). 

In figure 2, the distribution of uncertainty is effected by the selection method of the coordinate 
system and parameters in the calibration and the uncertainty of positioning is over estimated compare 
to the results in figure 3. In the other hand, figure 3 shows the symmetrical distribution, it means the 
selection method of the coordinate system and parameters does not influence on the evaluation results 
of uncertainties. Figure 4 illustrates the relationship between the measuring sizes and uncertainties in 



 
 
 
 
 
 

the measuring range of the coordinate measuring system. This relationship shows the performance of 
the coordinate system clearly. 
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Figure 2. Distribution of position uncertainties 
in the measuring machine coordinate system 
after the calibration (unit is µm). 
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Figure 3. Distribution of size measurement 
uncertainties from a specified point (100, 100) 
after the calibration (unit is µm). 
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Figure 4. Relationship between the 
measuring size and the uncertainties of 
measuring size (unit is µm) in the 
measuring range. 

4.  Conclusions 
In this article, we formulate theoretically the evaluation method of uncertainty of measurements after 
the calibration of the coordinate measuring system. Using this method, we can evaluate the uncertainty 
in the specified measuring tasks such as size measurement in the workpiece coordinate system. 
Furthermore, we suggest that the uncertainties distribution of size measurements of the coordinate 
measuring system shows the performance of the coordinate measuring machine. 
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