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Abstract. This paper presents a scanning squareness measurement method for large ultra-precision 

components. A rectangular block as the squareness reference is used. The squareness error of the 

rectangular block is eliminated according to the geometric principle that the sum of four internal 

angles of a rectangle is 360°. And the straightness error of each line of the rectangular block is 
eliminated by means of scanning method with two 1D probes. The above two error separation 

technologies are combined effectively and the data processing method is developed. Additionally, the 

standard uncertainties including tilt and squareness errors of the rectangular block, temperature drift 

and random errors of the measured values of the probes are analyzed theoretically. It is confirmed that 

a combined standard uncertainty of less than 1 arcsec can be obtained for typical values of the 

parameters. 

Introduction 

Squareness, which includes squareness between two fixed lines and motional squareness, etc., is an 

essential element of geometrical deviations. Generally, reference gauges such as right-angle gauges 

and levels are used for the measurement of squareness between two fixed lines. It is obvious that the 

accuracy of the reference gauge has to be higher enough than the aimed accuracy. However, there 

exist two problems for the measurement of large ultra-precision components. Firstly, it becomes very 

difficult and expensive to obtain a squareness reference with a higher accuracy than the 

ultra-precision component. Secondly, the straightness error of each line of the squareness reference 

can not be ignored anymore. 

In this paper, a measurement system with a rectangular block as the squareness reference for 

measuring the squareness between fixed x and y axis mirrors is presented. The principle of how to 

eliminate the influences of the squareness errors and the straightness errors of the rectangular block is 

explained in detail. Additionally, the main sources of uncertainty including tilt errors and squareness 

errors of the rectangular block, temperature drift and random errors of the measured values, are 

estimated. Each of the standard uncertainties is derived mathematically and the combined standard 

uncertainty is calculated by substituting typical values of the parameters. 

Scanning Squareness Measurement Method 

As shown in Fig. 1 a rectangular block is used for measuring the squareness between fixed x and y 

axis mirrors. Here the squareness is defined as the crossing angle α between the least squares (LS) 
lines of x and y axis mirror. Also, the internal angles of the rectangular block are defined as β1 ∼ β4 
which are composed of the LS lines of the four sides of the rectangular block. With a coarse 

adjustment, two small angles (θ1 and θ2 shown in Fig. 1) can be obtained between two sides of β1 and 
two sides of α. The geometrical relationship among α, β1, θ1 and θ2 can be expressed as: 
 

(1) 

 

.211 θθβα −=−
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When the rectangular block is rotated 90° in clockwise direction, two small angles (θ3 and θ4 not 
shown in this paper) can be obtained between two sides of β2 and two sides of α. Actually, by 
repeating the 90° rotation for 3 times, three pairs of small angles (θ3 ∼ θ8) can be obtained in three 
positions and own similar relationships like Eq. (1) [1]. Because the sum of β1 ∼ β4 is 360°, the 
squareness α can be expressed only by θ1 ∼ θ8: 
 

(2) 

 

To calculate θ1 ∼ θ8 respectively, scanning technology is employed [2]. Fig. 2 shows the 
measurement system for calculating θ1. Two 1D probes are oppositely set up on a scanning stage to 
scan a side of the rectangular block and y axis mirror respectively. If we take the sum of the measured 

values of two 1D probes, the motion errors of the scanning stage can be canceled and the following 

relationship can be obtained: 

 

(3) 

 

where m1 is the sum of the measured values of two 1D probes, fy is the straightness error based on the 

LS line of y axis mirror, g1 is the straightness error based on the LS line of one side of the rectangular 

block, yn (= (n − 1) × s) is the lateral position, s is the sampling interval, N is the number of the 
scanning point, c1 is the unknown constant. Eq. (3) can also be expressed as the following matrix 

equation: 

 

(4) 

 

Since fy and g1 are defined as the straightness errors based on their LS lines, the relationships (AFY = 

0 and AG1 = 0) are satisfied simultaneously. By means of left-multiplying Eq. (4) by A, X1 can be 

solved as follows (least squares solution when N ≥ 3): 
 

(5) 

 

It is clear that θ1 is the first element of the parameter vector X1. By repeating scans along x and y axis 

for 8 times, θ1 ∼ θ8 can be obtained totally. 
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Fig. 1  Principle of squareness measurement 

between x-y mirror using rectangular block 

Fig. 2  Scanning method using two sensors 

for calculating θ1 
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Uncertainty Estimation 

Firstly the tilt errors are considered when a 90° rotation of the rectangular block is performed. Fig. 3 
shows an ideal rectangular block with an original scan line ABCD, which indicates that no tilt errors 

(yawing, rolling and pitching) occurred. It is obvious that yawing does not influence the measurement 

result. However, the rotation axis in the z direction should pass the gravity point of the block so that 

the same points on a side of the rectangular block can be scanned along the x and y directions 

respectively after the operation of a 90° rotation. Fig. 4 shows the influence when rolling and pitching 
occur at the same time. In this case, the actual scan line becomes E′F from AB. Note that the 
difference of straightness errors between E′F and AB can be ignored because of the very little rolling 
and pitching error. The angle difference uγ occurred in face ABFE can be expressed as: 

 

(6) 

 

where γ denotes maximum angle of rolling error or pitching error. 
Next, we consider the squareness errors of the rectangular block itself accompanied with tilt errors. 

It is obvious that the squareness error of face ABCD does not influence the measurement result. Fig. 5 

shows the influence when the squareness errors of face ABB′A′ and face ADD′A′, rolling and 
pitching occur at the same time. In this case, the actual scan line becomes EB from AB. As a result, the 

standard uncertainty ur caused by the tilt and squareness errors of the rectangular block in eight scans 

can be expressed as: 

 

(7) 

 

where φ denotes maximum angle of the squareness errors of face ABB′A′ or face ADD′A′. Fig. 6 
shows the contour map of the standard uncertainty ur versus the squareness error φ and the tilt error γ 
of the rectangular block.  

Secondly, the temperature drift of the measured values of probes is considered. With a simple 

model, the standard uncertainty ud in eight scans can be expressed as: 

 

(8) 

 

where ∆m is the drift during the period of one side scan, L is the length of one side scan. 
Finally, the random errors of the measured values of probes are considered. It is assumed that the 
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measured values vector M1 has random errors with normal distribution and no correlation. The error 

matrix of the parameters Sp can be expressed as [3]: 

 

(9) 

 

where σm is the standard deviation of the random error of probes. As a result, the standard uncertainty 

um caused by the random error in eight scans can be expressed as: 

 

(10) 

 

Fig. 7 shows the contour map of the standard uncertainty um versus the number of scanning points N 

and the standard deviation of the random errors σm in the case of a sampling interval s = 1 mm. 

According to the standard uncertainties list above, the combined standard uncertainty uc can be 

calculated by Eq. (11) if we assume N = 50, s = 1 mm, σm = 50 nm, ∆m = 100 nm, φ = 40 arcsec, γ = 
150 arcsec. 

 

(11) 

 

Conclusions 

A reference-free scanning squareness measurement method for large ultra-precision components has 

been proposed. We described the measurement system using the rectangular block and the data 

processing method by means of matrix equations. The standard uncertainties including tilt and 

squareness errors of the rectangular block, temperature drift and random errors of the measured values 

of the probes, have been estimated. It is shown that a combined standard uncertainty of less than 1 

arcsec can be obtained for typical values of the parameters. 
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Fig. 6  Contour map of standard uncertainty (ur: 

arcsec) versus squareness error of rectangular 

block and tilt error of rectangular block 

Fig. 7  Contour map of standard uncertainty 

(um: arcsec) versus number of evaluated points 

and Std of random error of probes in the case 

of a sampling interval s = 1 mm 
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