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Abstract. Simple and easy uncertainty estimation method is proposed. Provided that specification or 
simple experimental result is available, possible variance and covariance in error are estimated and  
Monte-Carlo simulation reflecting constraint caused by the covariance can be performed. 
Comparison between uncertainties obtained by the proposed method and that by actual measurements 
on real CMM shows good agreement within 1 mµ  over-estimation.  

Introduction 
In recent years, the concept of traceability of measurement is spreading and the importance of 
uncertainty comes to be recognized[1]. Reality, however, is that uncertainty can be analytically 
calculated only in simple model case. For example, thinking about measurement with coordinate 
measurement machine (CMM), it has not only the complex structure but also the user may arbitrarily 
configure measurement task and the procedure for evaluating measured result. It requires enormous 
effort for users to evaluate uncertainty of the measurement, and the difficulty prevents the application 
on complicate measurement. 

In order to solve this problem, uncertainty estimation by Monte-Carlo simulation is becoming 
mainstream. This method is firstly realized as Virtual CMM (VCMM) by PTB[2]. However, VCMM 
also requires times and effort for the simulation, because it needs a lot of experimental data. 

In this report, very easy and simple uncertainty estimation method “Constrained Monte-Carlo 
Simulation (CMS) method” is proposed. This method is intended to estimate measurement 
uncertainty quickly with reasonable reliability and reduce user’s burden for it. 

Constrained Monte-Carlo Simulation 
In this method, Monte-Carlo simulation reflecting constraint caused by possible correlations in error 
is performed. The method consists of three steps. At first a covariance matrix of measurement errors 
is estimated. Secondly the matrix is decomposed into eigen vectors and eigen values. In the last step 
the eigen vectors are linearly coupled with random coupling coefficients, where variance of 
coefficients correspond to eigen values respectively, and we can obtain a trial measurement’s error. 

Derivation of the covariance matrix, the first step, is a key point of this method[3]. We may derive 
it from Machine’s specifications. For example, a specification of CMM is represented as a maximum 
permissible error in form of  
  

MPE [m]E a b l= + ⋅ ,        (1) 
  
where a  and b  are constant terms and l  is measuring length. We consider the MPEE  has a 
information of variance and covariance of the measurement. This means the machine potentially 
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shows error up to maxa b l+ ⋅ , where maxl  is maximum measurement range, but shorter the length than 

maxl  the error is reduced due to covariance effect. 
For ease of explanation, we consider one dimensional length measurement. Two coordinate 

values 1x  and 2x  result the size measurement 2 1l x x= − . ( )Var l , the variance of the size 
measurement, may be written as Eq. (2). Here, let the variance of 1x  and 2x  be independent of 
allocation of the coordinate values and the covariance be a function of l . Furthermore, assuming that 
when the length between them is longer than maxl  the covariance becomes 0, we have Eq. (3). 
  

2 1 1 2( ) ( ) ( ) 2 ( , )Var l Var x Var x Cov x x= + −  
2 2 ( ) ,xVar Cov l= −         (2) 

max
1 ( ) ,
2xVar Var l=         (3) 

  
Using Eqs. (2) and (3), ( )Cov l  is represented as Eq. (4). Here, let us simplify discussion by 
interpreting MPEE  be comparable to 95% probability limit of normal distribution. Then, ( )Var l  
may also be written as Eq. (5) from Eq. (1). 
  

{ }max
1( ) ( ) ( ) ,
2

Cov l Var l Var l= −         (4) 

( ){ }2
( ) / 2 ,Var l a b l= + ⋅         (5) 

  
From Eq. (4) covariance can be calculated as a function of length l . Suppose our measurement 

strategy have a series of n  point coordinates, covariance matrix C  with n n×  dimension is filled. 
Having the variance and covariance information, a unique Monte-Carlo simulation fully reflecting 
the given statistical characteristics is performed. 

In the second step, the covariance matrix C  is decomposed into the eigen vectors V  and the 
corresponding eigen values D .  

In the last step, trial value $x  is obtained by recomposing with random number iε  as Eq. (7), 
where iε  is a random number satisfying ( ) 0iE ε =  and ( )i iVar ε λ= . It utilizes technique of 
principal component analysis. This step is repeated up to desired number of times and same number 
of trial values are produced. 
  

,T=C VDV                                           (6) 
where  [ ] [ ] [ ][ ] [ ]1 1, diag ,2 n nλ λ= =V v v v DL L  

1 1 2 2ˆ ,n nε ε ε= + + +x v v vL         (7) 
  

Integrating Effect Caused by Probe 

In the previous chapter, we propose a procedure for deriving covariance matrix from MPEE . 
However, constant term of the equation includes probing directional error which would be 
represented as a function of azimuth angle φ  and elevation angle θ  of probing direction. We have to 
reflect the effect separately. 
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We empirically generate probe correlation model. Error of commercially available touch trigger 
probes have periodic component in azimuth direction and bias component in elevation direction[4]. 
These two components are firstly separated by performing measurement of reference sphere over the 
upper hemi sphere and averaging the measured result in azimuth direction (as Fig. 1). Then, the 
periodic component is fitted by two-dimensional function ( , )f φ θ , it would be cyclic in azimuth 
direction. Operating this procedure by changing probe setting angle in azimuth by  7.5 deg., totally 48 
measurements and the function ( , )if φ θ , where i = 1 : 48 is probe setting number, are obtained. 
Considering probing directions appeared in the measurement tasks, we can build an error matrix with 

48n×  dimension as shown in Eq. (8), and a covariance matrix representing probing directional error 
can be calculated as Eq. (9). Here, variance caused by probing directional error prbVar  can be 
estimated likewise. ( )Var l  in the previous chapter should be reduced as Eq. (10). Consequently 
Monte-Carlo simulation reflecting the probing directional error on CMS scheme can be realized.  
  

1 1 1 1

48 1 1 48

( , ) ( , )

( , ) ( , )

n n

n n

f f

f f
X

 
 =  
  

L

M

L

φ θ φ θ

φ θ φ θ

,        (8) 

T
prbC X X= ,        (9) 

( ){ }2
( ) / 2 prbVar l a b l Var= + ⋅ − ,        (10) 
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Fig.1 Separation of bias component from spatially periodic component 

Simulation with Input Parameter from Real CMM 
To confirm the ability of CMS, we perform simulation measurement by CMS with input parameter 
from a real CMM with the specification and the variance of probing directional error as Eqs. (11) and 
(12), where l  is in unit of mm . Correlation of probing directional error is experimentally estimated 
as proposed in the last chapter. The simulation and the corresponding real measurement are 
performed for two measurement tasks namely measurement of a step gauge and that of a cylinder 
artifact, and both results are compared. 
  

1.9 3/1000 [ m]EMPE l= + × µ ,        (11) 
20.06 [ m ]prbVar = µ ,        (12) 

  
The result of ten times step gauge measurements is shown in Fig. 2. The left figure shows the 

simulation result and the other one does the result from the real CMM. Physical measurements are 
performed on ten different CMMs but same model. We confirm both results resemble each other well 
by comparing them. 
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The cylinder artifact ( 90 mm, 250 mmLφ  in nominal size) has been calibrated by an NMI. The 
calibration uncertainty was reported as less than 0.7 mµ  for measurands and it is minor comparing to 
practical performance of the CMM. The physical measurement is repeated 256 times on the real 
CMM by varying location and orientation of the artifact. The measurement result may provide an 
experimentally obtained task specific uncertainty statements by multiple measurements. Simulation 
measurement by CMS is repeated 256 times as well. The comparison result of expanded uncertainties 
between CMS and real measurement is summarized in Fig. 3. However the worst shows 1 mµ  over 
estimated, this result shows the effectiveness of this method. 
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Fig.2 Comparison of simulation with real measurement  ( step gauge measurement ).  
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Fig.3 Comparison of uncertainty evaluation result  ( cylinder artifact ). 

Conclusion  
Very simple and easy uncertainty estimation method for industrially available CMM is proposed. 
This method performs Monte-Carlo simulation in orthogonally based error space and generate 
multiple trial measurement results which can be used for calculating task specific uncertainty. 
Comparison between uncertainties obtained by the proposed method and that by actual measurements 
on real CMM shows good agreement. 

This method can be widely applied to various measuring instruments in general, provided that 
variance and covariance  information can be estimated. The method benefits the users to evaluate 
uncertainty easily even in case of complex measurement. The method is expected to promote 
awareness of importance and usefulness of traceability and uncertainty in measurement. 
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