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Abstract
Coordinate metrology utilizes complex measuring systems such as coordinate measuring
machines, laser trackers and triangulation systems. Therefore, calibrating the coordinate
measuring system using artifacts, e.g. the artifact calibration method, is a key technology. In
this paper, methods of estimating uncertainties using the coordinate measuring system after
calibration are formulated. First, a calculation method which extracts the values of kinematic
parameters using the least-squares method is formulated. Second, the uncertainty of the
specified measuring task is calculated using the uncertainty propagation method. A coordinate
measuring system utilizing two line cameras is analyzed as an example. Moreover, the
influences of the form deviations of the measured workpiece are calculated in the
measurement of the features of a circle.
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1. Introduction

The calibration methods of coordinate measuring machines are
essential for accurate measurement, for the establishment of
traceability and for the evaluation of measurement uncertainty
[1–6]. Through the use of feature-based metrology, we
previously formulated a method to evaluate the uncertainty
in coordinate metrology [7, 8]. Furthermore, we proposed an
uncertainty propagation method to estimate the uncertainty
of kinematic parameters in the calibration of coordinate
measuring machines [9–11].

These evaluations of parameter uncertainty are calculated
in the machine coordinate system. However, the specified
measurement tasks are done in a workpiece coordinate system
after calibration. In this paper, methods of estimating
uncertainties using the calibrated coordinate measuring
machine after calibration are formulated. First, a variance
and covariance matrix on measuring points is calculated
based on a variance and covariance matrix of the kinematic

parameters of the calibrated measuring machine. Second, the
uncertainties of a size measurement or a point measurement
in a workpiece coordinate system are estimated using the
uncertainty propagation method. Therefore, the methods of
estimating the uncertainties on the specified measuring tasks
are formulated in the feature-based metrology. Moreover,
the form deviation of the measured workpiece influences the
uncertainty of the measurement results. We formulated an
uncertainty estimation method based on form deviations, and
show an example involving a circle feature measurement. The
proposed method can be a means of modeling according
to GUM (Guide to the Expression of Uncertainty in
Measurement) [4].

2. Uncertainty propagation in coordinate metrology

In coordinate metrology, associated features and associated
derived features are calculated from measured data sets on
real features by a CMM (coordinate measuring machine).
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Then, the associated features are compared with the nominal
features indicated on the drawings. In this data processing, the
features are primal targets to calculate, evaluate and process.
Consequently, this process is called feature-based metrology
[7].

A key technique in feature-based metrology is to estimate
the uncertainty of measurement [4] in the specific measuring
strategy [1–3]. A method for estimating the uncertainties of
measured parameters has already been proposed in which only
random errors are under consideration [8]. The uncertainty
of each measured point is defined by error analysis of the
CMM and the probing system. We give an example of how
to estimate the uncertainty of measuring points in section 3.
From the uncertainty of measuring points, the uncertainty of
the measured feature can be calculated statistically by using
the following equations.

Equation (1) shows an observation equation, where A
is the Jacobian matrix, d is a measurement vector and x
is a parameter vector. The parameters of the feature are
calculated by a least-squares solution in equation (2). We also
estimated the uncertainty of parameters P of the feature by the
uncertainty propagation in equation (3) and, the uncertainty
matrix (error matrix) S is defined by the uncertainty of the
measuring points. We analyze the uncertainty measurement
of circular features as an example in section 4,

d = Ax (1)

x = (AtS−1A)AtS−1d (2)

P = (AtS−1A)−1. (3)

In this paper, it is assumed that the bias of all factors in
measurements is compensated. When there is no systematic
error in the measuring process, the uncertainty matrix is
the unit matrix multiplied by the random error. In this
case, the uncertainty matrix does not affect the result of the
calculation in equation (2). For known systematic errors, we
can compensate for the measuring values. On the other hand,
when unknown systematic errors influence the measuring
results, the uncertainty matrix has factors of covariance due
to the systematic errors. Using the uncertainty matrix, we
can statistically estimate the influences from the unknown
systematic errors.

3. Uncertainty evaluation of a measuring point after
calibration

There are three steps to evaluate the uncertainties of a
measuring point: (1) determining the kinematic parameters by
calibration, (2) measuring the point after calibration and (3)
measurement under the conditions of the specified measuring
task. We formulated these steps theoretically, and analyzed a
coordinate measuring system utilizing two line-cameras as an
example.

3.1. Theoretical calculations for uncertainty of a measuring
point

The uncertainty of kinematic parameters can be calculated
based on the uncertainty factors in the kinematic calibration

of the coordinate measuring system using uncertainty
propagation. The forward kinematics of the coordinate
measuring system f is defined by the kinematic parameters
p and readings of each encoder q as in equation (4). The
uncertainty of the kinematic parameters Sp is calculated based
on the Jacobian matrix A and the uncertainty matrix S in
the calibration procedure, as in equation (5), where Sr is the
uncertainty of the coordinate conversion parameters of artifacts
and Spr is the covariance between the kinematic parameters and
the coordinate conversion parameters:

x = f(p, q) =
⎛
⎝x

y

z

⎞
⎠, p =

⎛
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p1

p2
...

⎞
⎟⎠, q =

⎛
⎜⎝

q1

q2
...

⎞
⎟⎠ (4)

(
Sp Spr

Spr Sr

)
= (AtS−1A)−1. (5)

The uncertainty matrix of a measurement point T1 consists of
variances of each coordinate sx2, sy2 and sz2, and covariances
between the XYZ coordinates sxy, sxz and syz of a measuring
point. Equation (6) defines T1 as the sum of three factors of
uncertainties, such as uncertainties from kinematic parameters
Tp, the uncertainty from encoders Tq and the uncertainty from
probing Tm. Each uncertainty can be calculated from equation
(4) using the uncertainty propagation method; here, sq is the
uncertainty of the encoders, sm is the uncertainty of probing
and E is the unit matrix.

The uncertainty in equation (6) is evaluated with regard
to the measuring machine coordinate system. However,
measurements are normally done on a workpiece coordinate
system. Then, the uncertainty of measurement st is calculated
as in equation (7), where At is the Jacobian matrix by the
specified measuring task and T1−n is a variance and covariance
matrix of the measuring points x1 – xn.

T1 =
⎛
⎝sx2 sxy sxz

sxy sy2 syz

sxz syz sz2

⎞
⎠ = Tp + Tq + Tm

= ApSpAt
p + s2

qAqAt
q + s2

mE (6)

s2
t = AtT1−nAt

t . (7)

3.2. Example of calibration of the coordinate measuring
system using two line-cameras

We demonstrate an example of calculation using a two-
dimensional coordinate measuring system employing two line-
cameras. Figure 1 shows the coordinate system of the two-
dimensional camera system; the two cameras are positioned
at (0, 0) and (a, 0) on the XY coordinate plane. Parameters b1

and b2 are the offset angles of each camera from the Y-axis and
parameter a is the X coordinate of camera 2 of approximately
200 mm.

The calibration conditions of the two-dimensional line-
camera system are as follows: number of calibration points:
25 in X and Y of 50–150 mm at 25 mm intervals. The standard
deviations (uncertainties) of the calibration result for b1, b2
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Figure 1. Two-dimensional coordinate measuring system using two
line-cameras. The kinematic parameters of the system are b1, b2

and a.

and a are 0.0042◦, 0.0042◦ and 15.7 µm, respectively, under a
random uncertainty of probing, while the obtained calibration
and the angle of each camera are 10 µm, 5 µm and 0.001◦,
respectively.

Equation (8) defines a measuring task of size measurement
in the XY coordinate plane as an example of a simple measuring
task. The size d is calculated by two measuring points x1

and x2 in the XY coordinate plane. From this equation, the
Jacobian matrix Ad is defined using the partial differential
of the coordinates of two points as in equation (9). Then,
an uncertainty of size measurement sd is calculated as in
equation (10), where T1–2 is a variance and covariance matrix
of the two measuring points x1 and x2. Figure 2 shows the
uncertainty sd of the size measurement from the specified point
x1 (x1 = 100, y1 = 100) in equation (8). The distribution of
the uncertainty is symmetric, which means that the selection
method of the coordinate system and parameters does not
influence the evaluation results of the uncertainties,

d = Gd(x1, x2) =
√

(x2 − x1)2 + (y2 − y1)2 (8)

Ad =
(

∂Gd

∂x1

∂Gd

∂x2

)

= (−x1 + x2 −y1 + y2 −x1 + x2 −y1 + y2)√
(x2 − x1)2 + (y2 − y1)2

(9)

s2
d = AdT1−2At

d . (10)

4. Uncertainty from form deviations of a measured
workpiece

The form deviation of the measured workpiece influences the
uncertainty of the measurement results. We formulated an
uncertainty estimation method based on form deviations, and
showed an example involving the circle feature measurement.

4.1. Theoretical calculations for uncertainty from form
deviations

Equations (11) and (12) show the method of calculating an
uncertainty matrix of the measured parameters P, where A
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Figure 2. Distribution of size measurement uncertainties from a
specified point (100, 100) after calibration (unit is µm).

is the Jacobian matrix and S is an uncertainty matrix of the
measured points. From the uncertainty matrix of parameters
P, we estimate the uncertainties of such measured parameters
as the diameter and the coordinate of a center in the specified
measured strategy:

C = (AtS−1A)−1AtS−1 (11)

P = CSCt = (AtS−1A)−1. (12)

When the form deviation is a random function, the uncertainty
matrix Sran is defined by the unit matrix and the uncertainty
sf of the form deviation in equation (13). When the form
deviation has a specified function, the uncertainty matrix Scov is
defined by the autocorrelation matrix Rcov and the uncertainty
sf of the form deviation in equation (14):
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= s2
f Rcov. (14)

From two types of error matrices Sran and Scov, there are three
types of uncertainties of measured parameters Pran, Pcov and
Pr+c, as defined in equations (15)–(17), respectively, where Sran

is the uncertainty of the form deviation sf multiplied by a unit
matrix and Scov is sf multiplied by an autocorrelation matrix
of the form deviation Rcov as equations (13) and (14).

Pran is the uncertainty matrix of the parameters when the
form deviation is assumed as a random function. Pcov is the
uncertainty matrix of the parameters when the form deviation
has a specified autocorrelation function and is calculated using
the autocorrelation function Rcov. Pr+c is the uncertainty matrix
of the parameters when the form deviation has a specified
autocorrelation function and is calculated using the normal
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Figure 3. Hole in aluminum board: diameter 20 mm, form deviation (standard deviation) sf 3.1 µm, number of measuring points of 256
and circularity 28.8 µm. (a) Circle feature, (b) autocorrelation.

least-squares method without the autocorrelation function
Rcov. In the three types of uncertainties, Pcov is the most
accurate estimation when the form deviation of the measured
workpiece has a specified autocorrelation function Rcov:

Pran = (
AtS−1

ranA
)−1 = s2

f (AtA)−1 (15)

Pcov = (
AtS−1

covA
)−1 = s2

f

(
AtR−1

covA
)−1

(16)

Pr+c = ((AtA)−1At )Scov((AtA)−1At )t

= s2
f ((AtA)−1At )Rcov((AtA)−1At )t . (17)

4.2. Examples of uncertainty estimation for circle feature
measurement

Using a hole with a circularity of 28.8 µm and form deviation
(standard deviation) sf of 3.1 µm as shown in figure 3(a) as
an example, we calculated the uncertainty of measurement of
the least-squares diameter. The number of measuring points
is 256 uniformly on the measured circle and the uncertainty of
measurement is included in the form deviation of the measured
circle. Figure 3(b) illustrates the autocorrelation function of
the hole. When the measuring points are set uniformly on the
measured circle, Pcov and Pr+c are identical values. Figure 4
illustrates the relationship between the number of data n
and the uncertainty of least-squares diameter sd calculated
by equations (15)–(17). In figure 4, the uncertainty of the
diameter in the 4, 6 and 8 measured data is larger than those
in an odd number of measured data. This is because the
autocorrelation function of the measured circle (figure 3) has
large 2- and 4-order frequency values.

Figure 5 illustrates the relationship between the number
of data n and the uncertainty of least-squares diameter sd,
when the measuring points are set on quarter of the measured
circle. In figure 5, Pr+c is the overestimation and Pran

is the underestimation from the accurate estimation of the
uncertainty Pcov.

5. Summary

In this paper, we theoretically formulate a method of
evaluating the uncertainty of measurement after calibration
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Figure 4. Relationship between number of data n and uncertainty of
least-squares diameter sd, when the measuring points are set
uniformly on the measured circle.
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Figure 5. Relationship between the number of data n and
uncertainty of the least-squares diameter sd, when the measuring
points are set on quarter of the measured circle.
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of the coordinate measuring system. Using this method,
we can evaluate the uncertainty of specified measuring tasks
such as size measurement and circle feature measurement in
the workpiece coordinate system. The uncertainty of the
specified measuring task is calculated using the uncertainty
propagation method. A coordinate measuring system utilizing
two line-cameras is analyzed as an example. Moreover, the
influences of the form deviations of the measured workpiece
are calculated in the measurement of the features of a circle.
These theoretical methods are applied to two-dimensional
models in this paper. In the next step, we will expand these
methods to three-dimensional complex models and execute
experiments to verify the simulated results.
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