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Abstract
Minimum zone method, minimum circumscribing method and maximum inscribing method are used for calculation of

form deviations and determination of datum system in ISO standards. However, there are no researches for statistical

evaluations of results from these methods. This is mainly because the results from these methods are determined by

positions of only few contact points. The novel statistical evaluation for minimum zone method has been proposed in

this article. Using this method, an average and a distribution of the first order (the smallest or the largest) of measured

points are calculated from the probability density function and the cumulative distribution function of measured points.

From the distribution of the first order of the measured points, the range of the largest value and the smallest value of

measured points are calculated. The series of simulations for minimum zone method show that the evaluation methods

in this article are useful to estimate the results of minimum zone method in coordinate metrology.

Keywords: minimum zone method, coordinate metrology, coordinate measuring machine, least squares method,

uncertainty of measurement

1. Introduction
Minimum zone method, minimum circumscribing method

and maximum inscribing method are used for calculation

of form deviations and determination of the datum system

according to ISO standards. One reason for this is that

functions of mechanical parts are strongly effected by

contact conditions of each part [1]. There are many

researches on minimum zone method [2]-[5], however

every researches do not deal with the statistical

evaluations of results by minimum zone method. This is

mainly because the results of minimum zone methods are

determined by positions of only few contact points on a

target feature.

  When minimum zone method is used in coordinate

metrology, the density of measured points is low and the

number of measured points is small. These factors

influenced strongly the statistical properties of minimum

zone calculations in coordinate metrology [6][7].

  In this article, novel statistical evaluation for minimum

zone method has been proposed. Using this method, an

average and a distribution of the first order (the smallest

or the largest) of measured points are calculated from the

probability density function and the cumulative

distribution function of measured points. From the

distribution of the first order of the measured points, the

range of the largest value and the smallest value of

measured points are calculated. For the straight lines, the

limits and the distribution of line slope are also calculated

using these methods.

  The series of simulations for minimum zone method

show that the evaluation methods in this paper are useful

to estimate the results of minimum zone method in

coordinate metrology. And we will consider following

items in this article;

(1) statistical evaluation of minimum zone method in

coordinate metrology,

(2) relationship between the uncertainty of measurements

and the measured results of minimum zone method, and

(3) the statistical properties of minimum zone method.
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2. Estimation of Positions of
Measured Points in Discrete
Measurement

2.1 Statistical Evaluation
In coordinate metrology, the number of measured points

on each features (flat plane, spherical plane, cylindrical

plane and so on) is very limited because of limitations of

measuring time, data volume, time for processing of data.

Under this condition, the statistical properties of measured

points on a straight line are estimated using the following

methods.

  Figure 1 shows 10 measured points on a straight line at

even intervals. The straight line is expressed by the

equation y = 0, length a and a probability density function

p (y) and a cumulative distribution function q (y), where

the relation between p (y) and q (y) is expressed as

equation (1).
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  From now on, the range h as the difference between the

largest measured value minus the smallest measured value,

is estimated. For this purpose, the probability density

function p1 (y) of the first order point (the smallest point)

is defined as equation (2), and the average ey1 and the

standard deviation sy1 of the first order point are also

defined as equations (3) and (4), respectively.
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  Here we are interested in the probability density

function pi (y) and the average eyi of the i-th order point

which are defined by same way as equations (5) and (6).

Where, nCk, combination of k in n, is defined as equation

(7).
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  Using equations (5) and (6), figure 2 shows the

probability density functions of the first to 5th order

points when the number of measured points is 5 and the

probability density function of measurement is Gaussian

distribution of the average is 0 and the standard deviation

is 1. And figure 3 also displays the probability functions

when the probability density function of measurements is

triangular distribution.

  We can estimate the probability density function of the

positions of measured points by these methods. In this

article, the statistical properties of minimum zone

methods will be evaluated using these equations.

2.2 Calculation of Range of the Largest
Value Minus the Smallest Value
The range h is defined as the difference between the

largest values minus the smallest values in the measured

points. The probability density function of the range p (h)

and the average of the range eh are defined as equations

(8) and (9). Because equation (9) is too complex, the

average eh is approximated using equation (3) to the last

term of equation (9).
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Fig. 1  Orders of measured points (y1 - y10) and range h in

straight line (length = a).
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  The standard deviation of range sh is also calculated by

the same method, and equation (10) defines the

approximate values of sh.
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  Figure 4 (a) shows the relation between the average of

range eh and the number of measured points n for the

probability density function of measurement is Gaussian

distribution, quadratic distribution, triangular distribution

and uniform distribution as equations (8), (9), (10) and

(11), respectively.. Figure 4 (b) displays the averages of

range eh after the normalization by the value of the

cumulative distribution function q (y) = 0.98. The
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Fig. 2  Probability density p1 ( y ) - p5 ( y ) of each order

of measured points by normal distribution function

(number of measured points = 5).
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Fig. 3  Probability density of each order of measured

points for triangluar distribution functions (number of

measured points = 5).
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(a) Befor normalization
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(b) Normalization by cumulative distribution function

Fig. 4  Relation between average of range eh and

number of measured points n for 4 styles of probability

density functions.



properties of the averages of range agree with each other

after the normalization. We conclude that the average of

range is influenced by the lower or the upper foot (ex. q

( y ) = 0.98) of the probability density function.

  Figure 5 displays calculated values of eh ± sh and eh ±
2sh by equations (9) and (10), when the probability

density function is the quadratic function. Figure 6 shows

the results of simulation of relation between the range h

which is calculated from 10 sets of simulated

measurements for each number of measured points n to

compare with eh ± sh and eh ± 2sh. Figures 5 and 6 show

good agreements for the statistical estimations from

equations (9) and (10) and the results of simulations of

range h.
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3. Calculation of Straightness of
Straight Line

3.1 Minimum Zone Calculation for
Straightness
  In this section, the straightness of line will be analyzed

by the same methods in section 2. Figure 7 indicates the

CLRS (Control Line Rotation Scheme) for the calculation

of straightness [8]. Firstly, two parallel lines are

positioned at the largest and the smallest points as figure 7

(a). Then each line rotates to the direction of the other

contact point, and the new contact point by the smaller

rotation is assigned as the third contact point. These

schemes will be repeated until the relation of three contact

points is the same condition of figure 7 (b).

  Using this scheme, the line slope under the condition of

minimum zone is defined the slope of y1 and y2 or y3 or

y4 ... for the upper line, and the slope of yn and yn-1 or yn-2

or yn-3 ... for the lower line.

3.2 Distribution of Line Slope
In the same manner, the probability density function of

line slope c on the first and the second order points is

estimated in disregard of the correlation between these

points. The probability density function of line slope p (c)

is defined by equation (15).
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Fig. 5  Average of range eh with standard deviation sh.
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Fig. 6  Simulation of range h and average of range eh

with standard deviation sh.
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  Since equation (15) is too complex and difficult to

integrate, the integration of Equation (15) is

approximated to equations (16) and (17) using the

standard deviations of the first and the second order

points, where a is the length of line and k is a suitable

constant from the distribution of order of points.
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  The relation between the line slope c and the number of

measured points n is illustrated in figure 8, when 100 sets

of line features are simulated. In figure 8, 30 sets of line

slope and the range of ec ± sc and ec ± 2sc are displayed,

where ec is the average line slope and sc is the standard

deviation of 100 sets of line features. The plotted values

by the simulation have good agreements with the

estimation ranges from equation (17), where k is

approximated to 3.

   

4. Conclusion
In this article, we proposed a novel statistical method for

evaluating minimum zone method in coordinate

metrology. Firstly, we show that the calculating method of

the distribution function of the first order of measured

points. Using this distribution, we estimate the results of

minimum zone. From simulations, we can note that this

method can precisely estimate the results of minimum

zone method of line, and we consider that this method

also can be applied to minimum zone of plane, circle and

so on.

  Further more, we show that the distribution of

minimum zone values is defined by the lower and the

upper foots of distribution functions. This directly shows

that large number of measured points should be used for

minimum zone method.

  From these discussion and simulations, we conclude

as the following;

(1) the range of measured points can be estimated by the

probability density function of the first order points,

(a) First condition of two parallel lines on the largest and

the smallest points and rotating to the direction of the

other contact point.

(b) Final condition of two parallel lines.

Fig. 7  Concept of CLRS (Control Line Rotation

Scheme) [8].
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Fig. 8  Distribution of line slope and estimations by

equation (17)



(2) the range of line slope by minimum zone method can

be also estimated by the probability density function first

order points.

  The future works as follows;

(1) these methods are applied on minimum zone of other

features such as plane, circle, cylinder and so on,

(2) the relation between the uncertainty of measurement

of minimum zone method and the uncertainty of

measured points is analyzed, and

(3) the strategy of minimum zone methods in coordinate

metrology is clearly defined.
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