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Abstract

Minimum zone method, minimum circumscribing method and maximum inscribing method are used for calculation of
form deviations and determination of datum system in ISO standards. However, there are no researches for statistical
evaluations of results from these methods. This is mainly because the results from these methods are determined by
positions of only few contact points. The novel statistical evaluation for minimum zone method has been proposed in
this article. Using this method, an average and a distribution of the first order (the smallest or the largest) of measured
points are calculated from the probability density function and the cumulative distribution function of measured points.
From the distribution of the first order of the measured points, the range of the largest value and the smallest value of
measured points are calculated. The series of simulations for minimum zone method show that the evaluation methods
in this article are useful to estimate the results of minimum zone method in coordinate metrology.
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uncertainty of measurement

zone method has been proposed. Using this method, an
average and a distribution of the first order (the smallest
Minimum zone method, minimum circumscribing methoar the largest) of measured points are calculated from the
and maximum inscribing method are used for calculatigorobability density function and the cumulative
of form deviations and determination of the datum systedistribution function of measured points. From the
according to 1ISO standards. One reason for this is thdistribution of the first order of the measured points, the
functions of mechanical parts are strongly effected byange of the largest value and the smallest value of
contact conditions of each part [1]. There are manyeasured points are calculated. For the straight lines, the
researches on minimum zone method [2]-[5], howevdimits and the distribution of line slope are also calculated
every researches do not deal with the statisticaking these methods.
evaluations of results by minimum zone method. This is The series of simulations for minimum zone method
mainly because the results of minimum zone methods akow that the evaluation methods in this paper are useful
determined by positions of only few contact points on & estimate the results of minimum zone method in
target feature. coordinate metrology. And we will consider following
When minimum zone method is used in coordinatitems in this article;
metrology, the density of measured points is low and tif@é) statistical evaluation of minimum zone method in
number of measured points is small. These factoc®ordinate metrology,
influenced strongly the statistical properties of minimunf2) relationship between the uncertainty of measurements
zone calculations in coordinate metrology [6][7]. and the measured results of minimum zone method, and
In this article, novel statistical evaluation for minimum(3) the statistical properties of minimum zone method.

1. Introduction
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2. Estimation of Positions of B a
Measured Points in Discrete <
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2.1 Statistical Evaluation Ys

In coordinate metrology, the number of measured points Y4 Vs
on each features (flat plane, spherical plane, cylindrical
plane and so on) is very limiteegtause ofimitations of
measuring time, data volume, time for processing of data. Y10

Under this condition, the statistical properties of measured

points on a straight line are estimated using the followingig. 1  Orders of measured poinys{y;) and rangé in

methods. straight line (length =).
Figure 1 shows 10 measured points on a straight line at

even intervals. The straight line is expressed by the

equationy = 0, lengtha and a probability density function

p (y) and a cumulative distribution functian(y), where ey=.C, ici_qun-i(y) A-q(y)™ p(y)ydy  (6)
the relation betweemp (y) and q (y) is expressed as

equation (1).
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, _ n(n-1)..n-k+1) @)
a(y) = [ p(t) dt 1) " k(k-1)..1

E " the diff bet " Using equations (5) and (6), figure 2 shows the
rom now on, the rangeas the difference between eprobability density functions of the first to 5th order

largest measured value minus the smallest measured value . .
g oirlts when the number of measured points is 5 and the

:cs eitlmated. 'f:(;: tr;.lstpu;pose,_t?ethprobabllllltyt de_ni'B/robability density function of measurement is Gaussian
.un(;: |;)n;)$(y) ° et.IrS c;r er 20';] (the sma esd ?ﬁm )distribution of the average is 0 and the standard deviation
IS define as' ef‘”a fon (2), a.n © averagean © is 1. And figure 3 also displays the probability functions
standard deviatiorsy, of the first order point are also . . . .
) ] ) when the probability density function of measurements is
defined as equations (3) and (4), respectively. . C
triangular distribution.
p,(Y) =n(a(y)"™ p(y) (2) We can estimate the probability density function of the
positions of measured points by these methods. In this
article, the statistical properties of minimum zone

— n-1
eh= nI(q(y)) P(y) ydy 3) methods will be evaluated using these equations.

sy = n[(ay)"™ p(y) (v ~ew)* dy 4 2.2 Calculation of Range of the Largest

Value Minus the Smallest Value
Here we are interested in the probability densitfhe rangeh is defined as the difference between the
function p, (y) and the averagey of thei-th order point largest values minus the smallest values in the measured
which are defined by same way as equations (5) and (fpints. The probability density function of the rann)
Where,,C,, combination ok in n, is defined as equation and the average of the rangk are defined as equations
. (8) and (9). Because equation (9) is too complex, the
P (¥)=,C Cia™ (V) @-a(y)'™ p(y) ) averageeh is z_approximated using equation (3) to the last
term of equation (9).



P()=,C, [(a(y) -aly =h)"™* p(y) p(y ~h) dy

eh= [ p(h) hdh

Dey, —ey, =2ey =2n[ (a(y))"™ p(y) ydy

(8)

(9)

st = [b(h) (h-eR)’ dh
<Sy? +8y =2sy}
=2n[(a(y)™ p(y) (y—ey)* dy

(10)

Figure 4 (a) shows the relation between the average of
rangeeh and the number of measured pointgor the
probability density function of measurement is Gaussian

The standard deviation of ransfeis also calculated by distribution, quadratic distribution, triangular distribution
the same method, and equation (10) defines tfg@d uniform distribution as equations (8), (9), (10) and

approximate values ch
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Fig. 2 Probability densitp, (y) - ps (y) of each orde

Measured valuey

(11), respectively.. Figure 4 (b) displays the averages of
range eh after the normalization by the value of the
cumulative distribution functionq (y) = 0.98. The
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(a) Befor normalization

of measured points by normal distribution function
(number of measured points = 5).
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Fig. 3 Probability density of each order of measurelc_jig 4
points for triangluar distribution functions (numbef o
measured points =

Measured valuey

5).

—%— Normal
—0— Quadratic
—A— Triangular
—&— Uniform
0 ‘
0 20 40 60
Number of measured points

Average of range eh

(b) Normalization by cumulative distribution function

Relation between average of range and
number of measured pointsfor 4 styles of probability
densiy functions.



properties of the averages of range agree with each other

after the normalization. We conclude that the average of 6 ch + 2sh
range is influenced by the lower or the upper foot ¢ex. S i eh + sh
(y) =0.98) of the probability density function. qg’u
Figure 5 displays calculated valuesebft shandeh + g
2sh by equations (9) and (10), when the probability 2 8
density function is the quadratic function. Figure 6 shows 8
the results of simulation of relation between the ramge :% eh -sh
which is calculated from 10 sets of simulated , eh-2sh 1 1

measurements for each number of measured poitds
compare withreh+ shandeh+ 2sh Figures 5 and 6 show
good agreements for the statistical estimations from

equations (9) and (10) and the results of simulations ofjg 5 Average of rangehwith standard deviatiosh.
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. . schemes will be repeated until the relation of three contact
3. Calculation of StralghtneSS of points is the same condition of figure 7 (b).

Straight Line Using this scheme, the line slope under the condition of

minimum zone is defined the slope ygfandy, or y; or
3.1 Minimum Zone Calculation for Y, ... for the upper line, and the slopeypfandy,, or .,
Straightness or Y, ... for the lower line.

In this section, the straightness of line will be analyzed

by the same methods in section 2. Figure 7 indicates tBe2 Distribution of Line Slope

CLRS (Control Line Rotation Scheme) for the calculatiof, 4o same manner, the probability density function of

of .s.tralghtness [8]. Firstly, two parallell lines _ e slopec on the first and the second order points is

positioned at the largest and the smallest points as figur@dimated in disregard of the correlation between these

(a). Then each line rotates to the direction of the OthEBints. The probability density function of line slqpéc)
contact point, and the new contact point by the smaIIT;;rdefined by equation (15).

rotation is assigned as the third contact point. These
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PO = [[[P(Y) P(y-cla ~a,) dyda da, (15) | TTgm===== =

Since equation (15) is too complex and difficult to

integrate, the integration of Equation (15) s _-"
approximated to equations (16) and (17) using the _,——”
standard deviations of the first and the second order F =

points, wherea is the length of line and is a suitable
constant from the distribution of order of points.

(a) First condition of two parallel lines on the largest and
+ . . o
s :J-p(c) c2 chSyl SY, DZSyl (16) the smallest points and rotating to the direction of the
a a other contact point.

ScDgsy1 (17) - B

The relation between the line slapand the number of &
measured points is illustrated in figure 8, when 100 setsL =
of line features are simulated. In figure 8, 30 sets of line
slope and the range et+ scandec+ 2scare displayed,

whereec is the average line slope asdis the standard L= -

deviation of 100 sets of line features. The plotted values ——td =

by the simulation have good agreements with the ~ -

estimation ranges from equation (17), wheke is

approximated to 3. (b) Final condition of two parallel lines.

4. Conclusion Fig. 7 Concept of CLRS (Control Line Rotation
In this article, we proposed a novel statistical method for Scheme) [8].

evaluating minimum zone method in coordinate
metrology. Firstly, we show that the calculating method of
the distribution function of the first order of measured
points. Using this distribution, we estimate the results of
minimum zone. From simulations, we can note that this
method can precisely estimate the results of minimum
zone method of line, and we consider that this method
also can be applied to minimum zone of plane, circle and
S0 on.

Further more, we show that the distribution of
minimum zone values is defined by the lower and the
upper foots of distribution functions. This directly shows -0.6 ! !
that large number of measured points should be used for 1 10 100 1000
minimum zone method.

From these discussion and simulations, we conclude
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as the following; Fig. 8 Distribution of line slope and estimations by
(1) the range of measured points can be estimated by #wuation (17)
probability density function of the first order points,



(2) the range of line slope by minimum zone method can
be also estimated by the probability density function first
order points.

The future works as follows;
(1) these methods are applied on minimum zone of other
features such as plane, circle, cylinder and so on,
(2) the relation between the uncertainty of measurement
of minimum zone method and the uncertainty of
measured points is analyzed, and
(3) the strategy of minimum zone methods in coordinate
metrology is clearly defined.
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