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Abstract
Coordinate Measuring Machines (CMM) have been developed and widely used to industrial goods. Traditional CMM

tends to become large and heavy in order to avoid the influence of the bending and twisting of its components and to

decrease measurement errors, because it is based on a serial mechanism. This paper deals with the development of a

new type of CMM device used a parallel mechanism. The position of the probe is calculated by solving the forward

kinematics. The equations of forward kinematics include some kinematic parameters, such as the length of connecting

rods, and it is necessary to decide these kinematic parameters for calculating the position of probe ball accurately. In

case of small parallel mechanisms, other larger measuring machines can measure these kinematical parameters, but it is

difficult to measure the parameters of huge mechanism using another measuring machines. Therefore, we use artifacts

to identify the kinematic parameters.
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1. Introduction
Coordinate Measuring Machines (CMM) have been

developed and widely used to measure “quickly”

“complex shapes” with “high accuracy” as improving

precision of industrial goods. Traditional CMM is based

on a serial mechanism: the components from base unit to

end-effector i.e. base unit, x-axis, y-axis, z-axis and

measuring probe are connected serially. However, some

drawbacks of this mechanism are its weakness against

external force and the accumulation of errors. Therefore,

CMM tends to become large and heavy in order to avoid

the influence of the bending and twisting of its

components and to decrease measurement errors.

This paper deals with the development of a new type of

CMM device: we used a parallel mechanism where the

base unit and the end-effector are connected by many

links in parallel. The advantages of this mechanism are its

robustness against external force and error accumulation.

Therefore, we will be able to make larger measuring

machine that can measure quickly large objects like cars

or industrial devices.

We have already built a famous Stewart platform type

of parallel mechanism that has 6 degrees of freedom

(DOF). This mechanism is based on spherical magnetic

joints using steel balls and magnets that allow higher

repeatability. However, the movable area of this

mechanism is not wide, because the stroke of each leg is

short. Moreover, it is too difficult to solve the forward

kinematics of this mechanism.

To resolve above problems, we are currently

developing new 3 DOF Parallel CMM, whose forward

kinematics can be solved analytically. The equations of

forward kinematics include some kinematical parameters,

such as the length of connecting rods, and it is necessary

to decide these kinematical parameters for calculating the

position of probe ball accurately. In case of small parallel

mechanisms, other larger measuring machines can

measure these kinematical parameters, but it is difficult to

measure the parameters of huge mechanism using another

measuring machines. Therefore, we use artifacts to

identify the kinematical parameters.

In this paper, firstly, we compare the characteristics of

parallel mechanism and serial mechanism for

measurement, and introduce two parallel mechanisms:

one is 6-DOF and another is 3-DOF mechanism. Next, the

equations of kinematics are shown and the method of

identifying the unknown kinematical parameters is

described.
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2. Parallel CMM

2.1 Characteristics
In this section, we compare serial mechanism and parallel

mechanism for measurement.

The position errors of joints in a serial mechanism are

accumulated. In parallel mechanism, they are averaged

because end-effector is connected with base unit in

parallel. For the same reason, the parallel mechanism has

higher rigidity and accuracy.

In serial mechanism, the dimensions of components

depend on their positions: a part close to the base has to

be stronger and thus heavier. However, we can use lighter

components that have small inertia in a parallel

mechanism because of its structure. So, the probe fixed on

end-effector can move quickly and the measurement time

becomes shorter.

2.1 6-DOF Parallel Mechanism [1]

We built a prototype of parallel mechanism based on the

famous Stewart platform [2] shown as Fig.1. It consists of

magnetic spherical joints, DC motors and Cylinoids,

which transform the rotational movement of motors into

linear movement. This prototype has 6 DOF: the position

and the posture of upper triangular plate (end-effector) are

controlled. Kinematics equations include the position and

the posture of plate and the position of the actuators, and

solving forward kinematics is calculating the position and

the posture of plate from the position of actuators. In

parallel mechanism, solving forward kinematics is

difficult and this problem is a drawback for measurement.

But some structures are known for an easy solving of

forward kinematics. DELTA mechanism [3] is one of the

structures which forward kinematics can be solved

analytically.

2.2 3-DOF Parallel CMM
Figure 2 shows new 3-DOF Parallel CMM developed us

for the purpose of measuring experiment. This mechanism

consists of DC motors, linear mechanisms that transform

the rotational movement of motors into the linear

movement using ball screw and ball nut, rotational joints,

connecting rods, universal joints and end-effector. All

heavy components that are DC motors and linear

mechanisms are fixed on base unit at the intervals of 120O,

so the upper part of this mechanism is very light and can

move quickly. The end-effector can move only x, y and z-

axis and do not rotate, because the universal joints and a

pair of rods make a parallel crank mechanism.

We put the developed mechanism on the table of the

general CMM and we checked the movement and

accuracy of this mechanism. In this experiment, the end-

effector can move in a parallel plane to the base unit and

its error is too small to be measured by our general CMM.

This system has a measuring probe that is a touch

trigger type under the end-effector and rotary encoders in

DC motors. Figure 3 shows the Parallel CMM system

include sensors and a controller. The trigger signal from

the touch trigger probe is detected through the probe

controller and parallel I/O board. The signal from zero

switches and phase Z of encoders are detected through

parallel I/O board, which are used for deciding the initial

position of travelling components on linear mechanisms.

The signal of phase A and B from encoders on DC motors

are detected through counter board, which are used for

calculating the angle of DC motors i.e. the position of

travelling components.

 The position of a ball that is a tip of the probe is

calculated by solving the forward kinematics using a

trigger signal from the measuring probe and the angle of

DC motors which are detected by the rotary encoders.

Fig.1 6DOF Parallel mechanism Fig.2 3DOF parallel CMM



2.3 Kinematics of 3-DOF PCMM
As a result of above experiment, it is found that the end-

effector can move in a parallel plane to the base unit.

Therefore, each pair of the rods can be replaced by one

rod and these three rods are regarded as sides of trigonal

pyramid, which upper vertex is the center of end-effector.

We call this trigonal pyramid “virtual link model”. Each

lower vertex is the point that is inside of the universal

joint and the real rods and the virtual rods are in parallel.

Figure 4 shows the relationship between the real

parallel mechanism and the virtual link model. At this

virtual link model, the position vector of the upper vertex

and another vertexes are P, Q0, Q1 and Q2, respectively.
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where x, y and z are the position of the tip of the probe, q0,

q1 and q2 are the distance from the origin to the virtual

travelling components and lp is the length of probe. The

relationship between the position vectors shown equation

(1) and the length of the connecting rods are as follows:

   )2,1,0(|||| ==− iliiQP                 (2)

where li ( i=0, 1, 2 ) are the length of rods. So, the

kinematics equations of virtual link model are as follows:
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2.4 Singular points
This 3-DOF Parallel CMM has two singular points: one is

called under mobility and another is over mobility. The

serial mechanisms have only under mobility and over

mobility is the special singular point at parallel

mechanisms.

 When all connecting rods are in same plane, this

system is the condition of under mobility. In real system,

the touch trigger probe will touch the base unit and will

be broken out. So, this condition can be avoided in normal

use. Over mobility is the condition that all connection

rods are in parallel. We have to avoid this condition,

because the end-effector can move freely even if all DC

motors are fixed while over mobility.

  

3. Parameter Identification
Kinematics equations include the position of the probe

and the position of the actuators. Solving inverse

kinematics is calculating the position of actuators from

the position of probe, and it is used for controlling the

position of the probe. Conversely, solving forward

kinematics is calculating the position of the probe from

the position of actuators. In general parallel mechanism, it

is too difficult to solve forward kinematics. However,

forward kinematics of the PCMM can be solved

analytically as follow equations.
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Fig.3 Parallel CMM system

Fig.4 Relationship between the real mechanism and

virtual link model



 The equations of forward kinematics include some

kinematical parameters, such as the length of connecting

rods, and it is necessary to decide these kinematical

parameters for calculating the position of probe ball

accurately. There are some method for identifying

kinematical parameters: (a) measuring all kinematical

parameters using other larger measuring system, (b)

calculating the kinematical parameters using the result of

measure by other measuring system and the signal from

encoders and (c) calculating the kinematical parameters

by measuring artifacts whose size is known.

Method (a) is fit for only small mechanisms and not for

large mechanism, because parallel mechanism is suitable

for huge system and it is hardly difficult to measure the

unknown kinematical parameters of huge mechanism

using another measuring machine.

In case of method (b), other larger measuring system

measures the position of the tip of probe x, y and z or the

position of the end-effector, and the position of the virtual

actuators are detected simultaneously. This method is fit

for small mechanisms as method (a), but there is a case of

using special noncontact measuring system.

We thought that method (c) is most suitable for our

Parallel CMM. Therefore, we use artifacts to identify the

kinematical parameters.

There are many kinds of artifact: for example, sphere,

block gauge, step gauge and so on. We choose sphere

whose radius is known, because it is used frequently for

compensating the radius of the probe ball and we get it

easily. This sphere is fixed on a rod and a magnetic stand.

Figure 4 shows the situation of parameter identification

by virtual link model.

At the parameter identification, the following equation

of sphere is necessary in addition the kinematics

equations (1):
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where x0, y0 and z0 are the position of center of measured

sphere and R is the radius of sphere, but this radius is

added the radius of the probe ball.

Here, we define the following equation as evaluating

equation:
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where p0, p1,… are the unknown parameters and forward

kinematics equations (4) are substituted for above x, y and

z. All unknown parameters have to satisfy the equation

   0,...),( 10 =ppf                          (7)

Measuring once the sphere by CMM makes one

evaluating equation. Therefore, we have to repeat the

measurement and the times of measurement equal the

number of parameters. We regard the evaluating equation

from the i-th measurement as fi( ) and get following

simultaneous equations:
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where k is the number of unknown parameters, m is the

times of measurement and O is the zero vector. It is

difficult to find solutions analytically because the above

simultaneous equations are nonlinear equations. So, we

need to use numerical calculation such as Newton-

Raphson method.

In fact, it is better that the times of measurement are

more than the number of unknown parameters because of

measuring errors. In Newton-Raphson method, iteration

goes using inverse matrix of Jacobi matrix J −1:
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The inverse matrix exists when k = m, however, does not

exist when k < m. Therefore, pseudo-inverse matrix J # is

used.

     TT JJJJ 1# )( −=                        (10)

The pseudo-inverse matrix is suitable for iteration of

Newton-Raphson method with measuring errors, because

it is equivalent to using least square method.Fig.4 Parameter identification model



4. Experiment
We carried out experiments of kinematical parameter

identification using 3-DOF PCMM developed by us. In

this experiment, firstly, a sphere whose diameter is 1 inch

is fixed in the movable area of PCMM. Secondly, at a

moment that the probe hanging on end-effector contacts

to the sphere, the position of virtual travelling

components qi (i=0, 1, 2) are calculated from encoders on

DC motors. Finally, nonlinear simultaneous equations (8)

are solved and the solutions i.e. the values of unknown

kinematical parameters are identified.

Table 1 shows the result of experiment when the

number of unknown parameters is six include the length

of connecting rods and the position of sphere. The values

of identified parameters are quite different from designed

values. We think that it is caused by measuring in narrow

area as only upper part of sphere and big measuring errors

at gaps of bearings. Especially, it seems that there are

some relationship between identified value z0 of the z

coordinate of the sphere and identified values l0, l1 and l2.

Next, in case that z0 is known, the results of identifying

parameters except z0 using same data as above experiment

are shown in Table 1. We have a good reason for this

assumption, which the height of the measured sphere can

be measured beforehand because the sphere is fixed on a

rod and a magnetic stand.

The result of identification became closer to designed

values, but it is wrong that errors between designed values

and identifying values is over 6mm. The reasons are that

the random deviations of measuring errors by gaps of

components are bigger than our estimate and errors of

other kinematical parameters are ignored here.

5. Simulation
In this simulation, the parameter identification is

simulated by the following method. Firstly, when the

probe touches to points on the sphere, the positions of

travelling components on linear system are calculated by

inverse kinematics. Next, measuring errors are added to

the calculated positions of the virtual travelling

components qi (i=0, 1, 2). Here, the parameters of inverse

kinematical model are regarded as true values. After this,

it is the same as experiment. Nonlinear simultaneous

equations (8) are solved to identify the values of unknown

kinematical parameters.

Table 2 shows the result of simulations in cases that the

numbers of unknown parameters are 3 and 6. The case of

3 parameters is for test of our program and in fact it is

impossible to know accurately the position of the sphere

except the z coordinate. Therefore, it is necessary to

regard the position of sphere as unknown parameters.

Of course, if there are no measuring errors, the

solutions of the nonlinear simultaneous equations equal

set values. In table 2, the measuring error is regarded as

5 µm and the solutions are very close to set values. It is

supposed that 1,000 points inside of movable area of

PCMM are measured, and the calculating values by

forward kinematics using identified 3 and 6 parameters

have maximum errors of 2.7 µm and 15 µm, respectively.

However, in above experiment, the identified

parameters have larger errors than these simulations. One

of the reasons is that there are another kinematical

parameters which should be identified. Therefore,

position errors ∆qi (i=0, 1, 2) of the virtual travelling

components are added to 6 parameters and next

simulation is executed using 9 parameters such as the

length of 3 connecting rods, the position errors of 3

virtual travelling components and the position of sphere.

 In addition, the numbers of spheres are varied from 1

to 4. There are 9 parameters in case of one sphere and 3

parameters are increased for every one sphere. The

number of measured point in each condition is same and

36.

The results of simulations are shown in Table 3. The

Table 1 Results of experiment: 36 points of the upper
sphere are measured.

Designed values 6 parameters 5 parameters
l0 290.0  360.55  294.69
l1 290.0  360.42  294.63
l2 290.0  360.23  296.23
x0    −4.6845    −6.6159
y0  −27.0223  −25.4314
z0 (114.0) 176.41
                                 (unit : mm)

Table 2 Result of simulations: the number of sphere is
one and kinds of kinematical parameters are
same as simulations. The measuring error is
regarded as 5 µm.
Set values 3 parameters 6 parameters

l0    291.0   291.0015   290.9954
l1    290.0   289.9995   289.9909
l2    289.0   289.0001   289.0018
x0      0.0      −0.0102
y0      0.0     0.0030
z0    114.0   113.9948
                                  ( unit : mm )
                                   



position of one sphere is mentioned and other positions

are omitted. It seems that the new parameters which are

position errors ∆qi (i=0, 1, 2) of the virtual travelling

components have great influence on identified parameters.

Moreover, the number of measured spheres similarly

affect values of identified parameters. In case of using 3

or 4 sphere, the identified parameters are closer to set

values.

Here, we discuss about correlation between the

identified parameters. It is assumed that the random

deviation of every measurement is independent each other

and the correlation are calculated. As the result, especially,

there is strong correlation between the z coordinate of

measured sphere and the length of connecting rods. This

is the reason why the identified errors of the length of

connecting rods and the errors of the z coordinate of

measured sphere are almost same in first experiment.

6. Conclusions
We constructed 3-DOF Parallel Coordinate Measuring

Machine whose forward kinematics can be solved

analytically. Firstly, we described the characteristics of

parallel mechanism and introduced our 6-DOF parallel

mechanism and 3-DOF parallel CMM. Next, the virtual

link model and its kinematics were described. Finally, we

carried out experiments of identifying unknown

parameters using developed PCMM and simulations for

investigation of the identified errors.

As the result of experiment, the random deviations of

measuring errors by gaps of components are bigger than

our estimate and there are errors of other kinematical

parameters which cannot be ignored. The result of

simulations means that added parameters which are

position errors of the virtual travelling components have

great influence on identified parameters. Moreover, it is

seemed that there are strong correlations between

kinematical parameters.

In the future, we will try identification of kinematical

parameters using other artifacts and we will develop new

PCMM whose mechanism has little gaps in components.
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0x     0.3     0.41     4.91     0.56     0.63
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