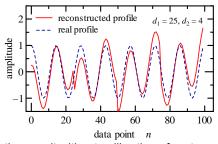
Study on Algorithm of Reconstructing **Topography Based on Topography Difference**

Objectives

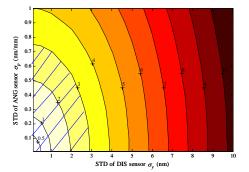

- To reconstruct topography based on topography difference, two algorithms are studied
 - Spatial frequency domain method (SFR)
 - Matrix equations method (EQU)
- Measurement method: Scan topography twice using two probes with intervals D_1 and D_2 so that two sets of topography differences are obtained

Spatial frequency domain method

A new condition of parameters is derived ($L \times s = P \times D_1 \times D_2$)

scan length L	sampling interval s	coefficient P	probe interval 1 D ₁	probe interval 2 D_2
200 mm	0.5 mm	10	4 mm	2.5 mm

Calibration of systematic errors is achieved in the presence of random errors


Simulation result without calibration of systematic errors

Matrix equations method

Uncertainty is calculated and confirmed by simulations

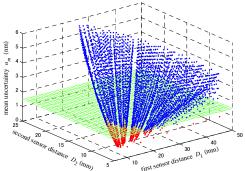
$$\mathbf{Y} = \mathbf{A}\mathbf{X} + \boldsymbol{\varepsilon} \qquad \mathbf{S}_{\mathbf{p}} = (\mathbf{A}^{\mathrm{T}}\mathbf{S}^{-1}\mathbf{A})^{-1}$$

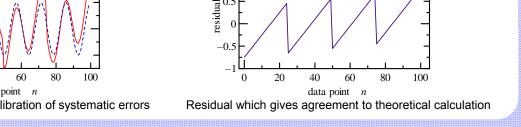
- Available parameters is selected in two cases
- Select available distance sensors and angle sensor to ensure a satisfied uncertainty

60

80

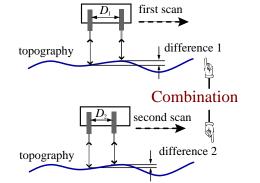
100


40


CI: 95%

Select available sensor intervals to ensure a satisfied uncertainty

20


real profile - reconstructed profile

E esidual

0.5

Ref.) X.Chen, K.Kotani, K.Takamasu: Study on algorithm of reconstructing topography based on topography difference, Euspen2007, Bremen, Germany, 2007